Advertisement

Mineralogy and Petrology

, Volume 113, Issue 4, pp 505–525 | Cite as

Evidence for an Ordovician continental arc in the pre-Mesozoic basement of the Huizachal–Peregrina Anticlinorium, Sierra Madre Oriental, Mexico: Peregrina Tonalite

  • Eduardo Alejandro Alemán-Gallardo
  • Juan Alonso Ramírez-FernándezEmail author
  • Augusto Antonio Rodríguez-Díaz
  • Fernando Velasco-Tapia
  • Uwe Jenchen
  • Esther María Cruz-Gámez
  • Lorena De León-Barragán
  • Ignacio Navarro-De León
Original Paper
  • 118 Downloads

Abstract

The Huizachal–Peregrina Anticlinorium basement of the Sierra Madre Oriental in north-eastern (NE) Mexico comprises a wide variety of Precambrian and Paleozoic units. A granitic unit, described in this work as the Peregrina Tonalite (PTo), intruded the Neoproterozoic Novillo Gneiss, which is the northernmost expression of the Oaxaquia microcontinent. In contrast, the PTo’s contact with the Carboniferous Granjeno Schist is tectonic along vertical faults with a strike-slip component. This Paleozoic lithodeme is part of the Granjeno–Acatlán Belt. The PTo has been described as an orphaned block associated with an enigmatic Carboniferous magmatic arc located along the north-western (NW) margin of Gondwana. In this study, new U–Pb LA–ICP–MS data from PTo zircons included a youngest Late Ordovician (Katian stage) population at 448.8 ± 2.9 Ma, interpreted as the crystallisation age, and an oldest Grenvillian population interpreted as the potential age of its protolith. Additionally, major and trace element concentrations and ratios indicate a link to a continental arc that developed along the NW margin of Gondwana. Given this proposed arc’s age and position, a comprehensive model for the development of the NE Mexican basement without the involvement of exotic or orphaned terranes is now proposed. The PTo outcropping near Ciudad Victoria, Tamaulipas, is interpreted to be part of a previously unreported magmatic arc in NE Mexico established during the Late Ordovician, herein described as the Peregrina–Mochonian Orogeny. It represents an extension of the South American Famatinian arc into Mexico.

Keywords

Huizachal–Peregrina Anticlinorium Peregrina Tonalite Continental arc Famatinian arc Peregrina–Mochonian orogeny 

Notes

Acknowledgments

The first author thanks the Consejo Nacional de Ciencia y Tecnología (CONACyT, Mexico) for the financial support during his M.Sc. program. We wish to thank also Dr. Carlos Ortega-Obregón (Centro de Geociencias, Universidad Nacional Autónoma de México) for fruitful discussions and help to clarify several aspects of analytical procedures. Dr. Raúl A. Becchio (Universidad Nacional de Salta, Argentina; Geo-Network of Latin American-German Alumni) provided very important clues for the regional interpretation of this work. Thanks to L.A. Elizondo Pacheco (Universidad Autónoma de Nuevo León) for field assistance and to M. Gary (Edwards Aquifer Authority, Austin, Tx.) for critical reading of the manuscript and diverse useful remarks. The authors also express sincere thanks to two journal reviewers and the Associate Editor Dr. Andreas Möller for their time to evaluate this manuscript efficiently and provide valuable comments.

Supplementary material

710_2019_660_Fig13_ESM.png (111 kb)
Supplementary Fig. S1

Harker diagrams for major and trace elements and ratios for the Peregrina Tonalite samples and for selected Paleozoic acidic magmatic rocks of Mexico, Central and South America. Data from the Aserradero Rhyolite (HPA, De León-Barragán 2012), the megacrystic granitoid plutons of the Acatlán Complex (Mexico, Miller et al. 2007), Motozintla Pluton (Mexico, Estrada-Carmona et al. 2012), Rabinal (Guatemala, Ortega-Obregón et al. 2008), Rabinal* (Solari et al. 2013), the Diablillos Intrusive Complex (Argentina, Suzaño et al. 2015), and the Sierra de Valle Fértil Complex (Argentina, Otamendi et al. 2017). a Al2O3, b Na2O, c FeO, d Rb, e Zr, f Sr/Y. Oxides of the major elements are adjusted to a volatile-free basis (adj). (PNG 111 kb)

710_2019_660_MOESM1_ESM.eps (1.6 mb)
High Resolution (EPS 1593 kb)
710_2019_660_MOESM2_ESM.docx (27 kb)
ESM 2 (DOCX 26 kb)

References

  1. Alemán-Gallardo EA (2016) Arcos magmáticos del Ordovícico y del Carbonífero en el basamento de la Sierra Madre Oriental, en el Anticlinorio Huizachal-Peregrina. MSc thesis, Universidad Autónoma de Nuevo León, MéxicoGoogle Scholar
  2. Anderson TH, Nourse JA, McKee JW, Steiner MB (eds) (2005) The Mojave-Sonora megashear hypothesis: development, assessment, and alternatives. Geol Soc Am Spec Pap 393:1–690Google Scholar
  3. Arellano-Gil J, Vachard D, Yussim S, Flores de Dios-González A (1998) Aspectos estratigráficos, estructurales y paleogeográficos del Pérmico inferior al Jurásico inferior en Pemuxco, estado de Hidalgo, México. Rev Mex Cien Geol 15:9–13Google Scholar
  4. Barboza-Gudiño JR, Zavala-Monsiváis A, Venegas-Rodríguez G, Barajas-Nigoche LD (2010) Late Triassic stratigraphy and facies from northeastern Mexico: tectonic setting and provenance. Geosphere 6:621–640CrossRefGoogle Scholar
  5. Barboza-Gudiño JR, Ramírez-Fernández JA, Torres-Sánchez SA, Valencia VA (2011) Geocronología de circones detríticos de diferentes localidades del Esquisto Granjeno en el noreste de México. Bol Soc Geol Mex 63:201–216Google Scholar
  6. Benedetto JL (2010) El continente de Gondwana a través del tiempo. Una introducción a la Geología Histórica. Academia Nacional de Ciencias, CórdobaGoogle Scholar
  7. Bellizia A, Pimentel N (1994). Terreno Mérida: un cinturón alóctono Herciniano en la cordillera de Los Andes de Venezuela. In 5th Simposio Bolivariano-Exploracion Petrolera en las Cuencas SubandinasGoogle Scholar
  8. Boucot AJ, Blodgett R, Stewart JH (1997) European province late Silurian brachiopods from the Ciudad Victoria area, Tamaulipas, northeastern Mexico. Geol Soc Am Spec Pap 321:273–294Google Scholar
  9. Cameron KL, Lopez R, Ortega-Gutiérrez F, Solari LA, Keppie JD, Schulze C (2004) U-Pb geochronology and Pb isotopic compositions of leached feldspars: constraints on the origin and evolution of Grenville rocks from eastern and southern Mexico. Geol Soc Am Mem 197:755–769Google Scholar
  10. Carrillo-Bravo J (1961) Geología del Anticlinorio Huizachal-Peregrina al NE de Cd. Victoria, Tamaulipas. Bol Asoc Mex Geol Petrol 13:1–98Google Scholar
  11. Casas-García R (2014) Caracterización petrológica de las nelsonitas precámbricas del complejo Gneis Novillo, NE de México. MSc thesis, Universidad Autónoma de Nuevo León, MéxicoGoogle Scholar
  12. Castillo-Rodríguez H (1988) Zur Geologie des kristallinen Grundgebirges der Sierra Madre Oriental – insbesondere des Granjeno–Schiefer Komplexes im Südteil des Huizachal–Peregrina–Antiklinoriums (Raum Ciudad Victoria, Tamaulipas, Mexiko). MSc thesis, Westfälische Wilhelms-Universität in Münster, GermanyGoogle Scholar
  13. Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 8:173–174Google Scholar
  14. Cross GE (2012) Evaporite deformation in the Sierra Madre Oriental, northeastern Mexico: Décollement kinematics in an evaporite-detached thin-skinned fold belt. PhD thesis, University of Texas at Austin, USAGoogle Scholar
  15. De León-Barragán L (2012) Magmatismo de arco del Carbonífero de la margen NW de Gondwana en el estado de Tamaulipas, México. BSc thesis, Universidad Autónoma de Nuevo León, MexicoGoogle Scholar
  16. De León-Barragán L, Ramírez-Fernández JA (2012) Magmatismo de Arco del Carbonífero de la margen NW de Gondwana en el Estado de Tamaulipas, México. Simposio Geología de la Sutura Laurencia Gondwana en Chihuahua, October 2012. Universidad Autónoma de Chihuahua 56–58Google Scholar
  17. Dickinson WR, Lawton TF (2001) Carboniferous to cretaceous assembly and fragmentation of Mexico. Geol Soc Am Bull 133:1142–1660CrossRefGoogle Scholar
  18. Dowe DS (2004) Deformational history of the Granjeno Schist near Ciudad Victoria, Mexico. MSc thesis, Ohio University, USAGoogle Scholar
  19. Dowe DS, Nance RD, Keppie JD, Cameron KL, Ortega-Rivera A, Ortega-Gutierrez F, JWK L (2005) Deformational history of the Granjeno schist, Ciudad Victoria, Mexico: constraints on the closure of the Rheic Ocean? Int Geol Rev 47:920–937CrossRefGoogle Scholar
  20. Ducea MN, Paterson SR, DeCelles PG (2015) High-volume magmatic events in subduction systems. Elements 11:99–104CrossRefGoogle Scholar
  21. Estrada-Carmona J, Weber B, Martens U, López-Martínez M (2012) Petrogenesis of Ordovician magmatic rocks in the southern Chiapas massif complex: relations with the early Palaeozoic magmatic belts of northwestern Gondwana. Int Geol Rev 54:1918–1943CrossRefGoogle Scholar
  22. Fries C Jr, Rincón-Orta C (1965) Nuevas aportaciones geocronológicas y técnicas empleadas en el Laboratorio de Geocronometría. Revista del Instituto de Geología (México) 73:57–133Google Scholar
  23. Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048CrossRefGoogle Scholar
  24. Garrison JR, Ramírez-Ramírez C, Lang LE (1980) Rb-Sr isotopic study of the ages and provenance of Precambrian granulite and Paleozoic greenschist near Ciudad Victoria, Mexico. In: Pilger RHJr (eds) The origin of the Gulf of Mexico and the early opening of the central North Atlantic Ocean: Baton Rouge, Louisiana, USA, Louisiana State University: 37-49Google Scholar
  25. González-Guzmán R (2016) Estudio petrogenético del basamento cristalino de la porción sureste del Macizo de Chiapas: Implicaciones tectónicas del Bloque Maya Sur. PhD thesis, CICESE, MéxicoGoogle Scholar
  26. González-Guzmán R, Weber B, Manjarrez-Juárez R, Cisneros-De León A, Hecht L, Herguera-García JC (2016) Provenance, age constraints and metamorphism of Ediacaran metasedimentary rocks from the El Triunfo complex (SE Chiapas, México): evidence for Rodinia breakup and Iapetus active margin. Int Geol Rev 58:2065–2091CrossRefGoogle Scholar
  27. Goodenough KM, Thomas RJ, Styles MT, Schofield DI, MacLeod CJ (2014) Records of ocean growth and destruction in the Oman–UAE ophiolite. Elements 10:109–114CrossRefGoogle Scholar
  28. Grimes CB, Ushikubo T, Kozdon R, Valley JW (2013) Perspectives on the origin of plagiogranite in ophiolites from oxygen isotopes in zircon. Lithos 179:48–66CrossRefGoogle Scholar
  29. Grimes CB, Wooden JL, Cheadle MJ, John BE (2015) “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contrib Mineral Petrol 170:1–26CrossRefGoogle Scholar
  30. Gursky H-J, Ramírez-Ramírez C (1986) Notas preliminares sobre el descubrimiento de volcanitas ácidas en el Cañón de Caballeros (Núcleo del Anticlinorio Huizachal-Peregrina, Tamaulipas, México). Actas Fac Ciencias Tierra UANL 1:11–22Google Scholar
  31. Gursky H-J (1996) Paleozoic stratigraphy of the Peregrina canyon area, Sierra Madre Oriental. Zbl Geo Pal Teil I, Heft 7(8): 973-989Google Scholar
  32. Gursky H-J, Michalzik D (1989) Lower Permian turbidites in the northern Sierra Madre Oriental, Mexico, Zbl Geol Paläont, Teil I. Heft 5(6):821–838Google Scholar
  33. Holtz F, Johannes W (1991) Genesis of peraluminous granites I. Experimental investigation of melt compositions at 3 and 5 kb and various H2O activities. J Petrol 32:935–958CrossRefGoogle Scholar
  34. Hoskin PW, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62CrossRefGoogle Scholar
  35. Howarth RJ (1998) Improved estimators of uncertainty in proportions, point-counting, and pass-fail test results. Am J Sci 298:594–607CrossRefGoogle Scholar
  36. Keppie JD (2004) Terranes of Mexico revisited: a 1.3 billion year odyssey. Int Geol Rev 46:765–794CrossRefGoogle Scholar
  37. Kirkland CL, Smithies RH, Taylor RJM, Evans N, McDonald B (2015) Zircon Th/U ratios in magmatic environs. Lithos 212:397–414CrossRefGoogle Scholar
  38. Kirsch M, Keppie JD, Murphy JB, Solari LA (2012) Permian-carboniferous arc magmatism and basin evolution along the western margin of Pangea: geochemical and geochronological evidence from the eastern Acatlán complex, southern Mexico. Geol Soc Am Bull 124(9–10):1607–1628CrossRefGoogle Scholar
  39. Lawlor PJ, Ortega-Gutiérrez F, Cameron KL, Ochoa-Camarillo H, Lopez R, Sampson DE (1999) U–Pb geochronology, geochemistry, and provenance of the Grenvillian Huiznopala gneiss of eastern Mexico. Precambrian Res 94:73–99CrossRefGoogle Scholar
  40. Lee C-TA, Morton DM, Kistler RW, Baird AK (2007) Petrology and tectonics of Phanerozoic continent formation: from island arcs to accretion and continental arc magmatism. Earth Planet Sci Lett 263:370–387CrossRefGoogle Scholar
  41. Ludwig KR (2012) Isoplot/Ex, v. 3.75. Berkeley Geochronology Center Special Publication 5Google Scholar
  42. Martini M, Ortega-Gutiérrez F (2018) Tectonostratigraphic evolution of eastern Mexico during the break-up of Pangea: a review. Earth-Sci Rev 183:38–55CrossRefGoogle Scholar
  43. McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  44. McKee JW, Jones NW, Anderson TH (1999) The late Paleozoic and early Mesozoic history of the Las Delicias terrane, Coahuila, Mexico. In: Bartolini C, Wilson JL, Lawton TF (eds) Mesozoic sedimentary and tectonic history of north-central Mexico. Geol Soc America Special Paper 340: 161–189Google Scholar
  45. Middlemost EA (1989) Iron oxidation ratios, norms and the classification of volcanic rocks. Chem Geol 77:19–26CrossRefGoogle Scholar
  46. Miller CF (1985) Are strongly peraluminous magmas derived from pelitic sedimentary sources? J Geol 93:673–689CrossRefGoogle Scholar
  47. Miller BV, Dostal J, Keppie JD, Nance RD, Ortega-Rivera A, Lee JKW (2007) Ordovician calc-alkaline granitoids in the Acatlán Complex, southern Mexico: Geochemical and geochronologic data and implications for the tetonics of the Gondwanan margins of the Rheic Ocean. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian-Cadomian active margin to Alleghenian-Variscan collision. Geol Soc Am Special Paper 423: 465–475Google Scholar
  48. Nabelek PI, Russ-Nabelek C, Denison JR (1992) The generation and crystallization conditions of the Proterozoic Harney peak leucogranite, Black Hills, South Dakota, USA: petrologic and geochemical constraints. Contrib Mineral Petrol 110:173–191CrossRefGoogle Scholar
  49. Nance RD, Fernández-Suárez J, Keppie JD, Storey C, Jeffries TE (2007) Provenance of the Granjeno schist, Ciudad Victoria, México: detrital zircon U-Pb age constraints and implications for the Paleozoic paleogeography of the Rheic Ocean. Geol Soc Am Spec Pap 423:453–464Google Scholar
  50. Orozco-Esquivel MT (1990) Zur Petrologie des Kristallins im Huizachal-Peregrina-Fenster. Sierra Madre Oriental, Mexiko. MSc thesis, Universität Karlsruhe, GermanyGoogle Scholar
  51. Ortega-Gutiérrez F (1978) El Gneis Novillo y rocas metamórficas asociadas en los cañones del Novillo y Peregrina, área de Ciudad Victoria, Tamaulipas. Revista del Instituto de Geología (México) 2:19–30Google Scholar
  52. Ortega-Gutiérrez F, Ruiz J, Centeno-García E (1995) Oaxaquia, a Proterozoic microcontinent accreted to North America during the late Paleozoic. Geology 23:1127–1130CrossRefGoogle Scholar
  53. Ortega-Obregón C, Solari LA, Keppie JD, Ortega-Gutiérrez F, Solé J, Morán-Ical S (2008) Middle-late Ordovician magmatism and late cretaceous collision in the southern Maya block, Rabinal-Salamá area, Central Guatemala: implications for North America–Caribbean plate tectonics. Geol Soc Am Bull 120:556–570CrossRefGoogle Scholar
  54. Otamendi JE, Ducea MN, Cristofolini EA, Tibaldi AM, Camilletti GC, Bergantz GW (2017) U-Pb ages and Hf isotope composition of zircons in plutonic rocks from central Famatinian arc, Argentina. J S Am Earth Sci 76:412–426CrossRefGoogle Scholar
  55. Patiño-Douce AE, Beard JS (1996) Effects of P, f(O2) and mg/Fe ratio on dehydration melting of model metagreywackes. J Petrol 37:999–1024CrossRefGoogle Scholar
  56. Patiño-Douce AE, Harris N (1998) Experimental constraints on Himalayan anatexis. J Petrol 39:689–710CrossRefGoogle Scholar
  57. Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A, Maas R (2010) Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem Geophys Geosyst 11(3):Q0AA06CrossRefGoogle Scholar
  58. Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualization and processing of mass spectrometric data. J Anal At Spectrom 26:2508CrossRefGoogle Scholar
  59. Pearce JA, Harris NB, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983CrossRefGoogle Scholar
  60. Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet Sci 23:251–285CrossRefGoogle Scholar
  61. Petrus JA, Kamber BS (2012) VizualAge: a novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostand Geoanal Res 36:247–270CrossRefGoogle Scholar
  62. Ramírez-Ramírez C (1992) Pre-Mesozoic geology of Huizachal-Peregrina Anticlinorium, Ciudad Victoria, Tamaulipas, and adjacent parts of eastern Mexico. PhD thesis, The University of Texas at Austin, USAGoogle Scholar
  63. Ramírez-Fernández JA, Jenchen U (2016) Cinturones orogénicos sepultados bajo la Sierra Madre Oriental: basamento precámbrico y paleozoico. Ciencia UANL 19:47–53Google Scholar
  64. Ramos VA (1988) Late Proterozoic–early Paleozoic of South America – a collisional history. Episodes 11:168–174Google Scholar
  65. Ramos VA, Mosquera A, Folguera A, García-Morabito E (2011) Evolución tectónica de los Andes y del engolfamiento Neuquino adyacente. In: Leanza HA, Arregui C, Carbone O, Danieli JC, Vallés JM (eds) Geología y Recursos Naturales de La Provincia del Neuquén. Relatorio del XVIII Congreso Geológico Argentino, Asoc Geol Argentina: 335–348Google Scholar
  66. Ramos VA (2018) The Famatinian orogen along the protomargin of Western Gondwana: evidence for a nearly continuous Ordovician magmatic arc between Venezuela and Argentina. In: Folguera A, Contreras Reyes E, Heredia N, Encinas AB, Iannelli S, Oliveros VM, Dávila F, Collo G, Giambiagi L, Maksymowicz A, Iglesia-Llanos MP, Turienzo M, Naipauer M, Orts DD, Litvak V, Alvarez O, Arriagada C (eds) The evolution of the Chilean-Argentinean Andes. Springer, Cham, Switzerland, pp 154–183Google Scholar
  67. Rapela CW, Pankhurst RJ, Casquet C, Baldo E, Saavedra J, Galindo C (1998) Early evolution of the proto-Andean margin of South America. Geology 26:707–710CrossRefGoogle Scholar
  68. Rivera-García JJ (2017) Origen y evolución del esquisto de talco del Paleozoico en el Alto de Aramberri, N.L., MSc thesis, Universidad Autónoma de Nuevo León, MéxicoGoogle Scholar
  69. Rivera-García JJ, Ramírez-Fernández JA, Cruz-Gámez EM (2017) Yacimientos de Talco en el estado de Nuevo León. Geomimet 44:15–20Google Scholar
  70. Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Longman, LondonGoogle Scholar
  71. Rubio-Cisneros II, Lawton TF (2011) Detrital zircon U-Pb ages of sandstones in continental red beds at Valle de Huizachal, Tamaulipas, NE Mexico: record of early-middle Jurassic arc volcanism and transition to crustal extension. Geosphere 7:159–170CrossRefGoogle Scholar
  72. Rushmer T, Jackson M (2006) Impact of melt segregation on tonalite–trondhjemite–granodiorite (TTG) petrogenesis. Earth Environ Sci Trans R Soc Edinburgh 97:325–336CrossRefGoogle Scholar
  73. Schulze-Schreiber CH (2011) Petrología y geoquímica de las rocas de Pluma Hidalgo, Oaxaca e implicaciones tectónicas para el Proterozoico de “Oaxaquia”. PhD thesis, Instituto de Geología, Universidad Nacional Autónoma de México, MexicoGoogle Scholar
  74. Slama J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35CrossRefGoogle Scholar
  75. Solari LA, Keppie JD, López R, Cameron KL, Ortega-Gutiérrez F (2004) ~ 990 ma peak granulitic metamorphism and amalgamation of Oaxaquia, Mexico: U-Pb zircon geochronological and common Pb isotopic data. Rev Mex Cien Geol 21:212–225Google Scholar
  76. Solari LA, Gómez-Tuena A, Bernal JP, Pérez-Arvizu O, Tanner M (2010) U-Pb zircon geochronology with an integrated LA-ICP-MS microanalytical workstation: achievements in precision and accuracy. Geostand Geoanal Res 34:5–18CrossRefGoogle Scholar
  77. Solari LA, García-Casco A, Martens U, Lee JK, Ortega-Rivera A (2013) Late cretaceous subduction of the continental basement of the Maya block (Rabinal granite, Central Guatemala): tectonic implications for the geodynamic evolution of Central America. Geol Soc Am Bull 125:625–639CrossRefGoogle Scholar
  78. Soesoo A, Košler J, Kuldkepp R (2006) Age and geochemical constraints for partial melting of granulites in Estonia. Miner Petrol 86:277–300CrossRefGoogle Scholar
  79. Sour-Tovar F, Álvarez F, MLM C (2005) Lower Mississippian (Osagean) spire-bearing brachiopods from canon de la Peregrina, north of Ciudad Victoria, Tamaulipas, northeastern Mexico. J Paleontol 79:469–485CrossRefGoogle Scholar
  80. Springer W, Seck HA (1997) Partial fusion of basic granulites at 5 to 15 kbar: implications for the origin of TTG magmas. Contrib Mineral Petrol 127:30–45CrossRefGoogle Scholar
  81. Stern RJ, Dickinson WR (2010) The Gulf of Mexico is a Jurassic backarc basin. Geosphere 6:739–754CrossRefGoogle Scholar
  82. Stewart JH, Blodgett RB, Boucot AJ, Carter JL, Lopez R (1999) Exotic Paleozoic strata of Gondwanan provenance near Ciudad Victoria, Tamaulipas, Mexico. In: Ramos VA, Keppie JD (Eds) Laurentia-Gondwana connections before Pangea. Geol Soc America Special Paper 336: 227–252Google Scholar
  83. Streckeisen A (1976) To each plutonic rock its proper name. Earth-Sci Rev 12:1–33CrossRefGoogle Scholar
  84. Sun SS, McDonough WS (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Spec Publ 42:313–345CrossRefGoogle Scholar
  85. Suzaño N, Becchio R, Nieves A, Sola A, Ortiz A (2015) Mezcla de magmas en el Arco magmático Famatiniano del noroeste de Argentina: ejemplo en el complejo intrusivo Diablillos, Puna austral. J SAm Earth Sci 32:433–454Google Scholar
  86. Suzaño N, Becchio R, Sola A, Ortiz A, Nieves A, Quiroga M, Fuentes G (2017) The role of magma mixing in the evolution of the early Paleozoic calc-alkaline granitoid suites. Eastern magmatic belt, Puna, NW Argentina. J S Am Earth Sci 76:25–46CrossRefGoogle Scholar
  87. Torres-Ruiz J, Patchett PJ, Grajales JM (1999) Permo-Triassic continental arc in eastern Mexico: tectonic implications for reconstructions of southern North America. Geol Soc Am Spec Pap 340:191–196Google Scholar
  88. Torres-Sánchez SA, Augustsson C, Barboza-Gudiño JR, Jenchen U, Ramírez-Fernández JA, Abratis M, Scherstén A (2016) Magmatic source and metamorphic grade of metavolcanic rocks from the Granjeno schist: was northeastern Mexico a part of Pangaea? Geol J.  https://doi.org/10.1002/gj.2702
  89. Torres-Sánchez SA, Augustsson C, Jenchen U, Barboza-Gudiño JR, Alemán-Gallardo EA, Ramírez-Fernández JA, Torres-Sánchez D, Abratis M (2017) Petrology and geochemistry of meta-ultramafic rocks in the Paleozoic Granjeno schist, northeastern Mexico: remnants of Pangaea ocean floor. Open Geosci 9:361–384CrossRefGoogle Scholar
  90. Trainor RJ (2010) Structural/Kinematic and Metamorphic Analysis of the Mesoproterozoic Novillo Gneiss, Tamaulipas, Mexico. MSc thesis, Ohio University, USAGoogle Scholar
  91. Trainor RJ, Nance RD, Keppie JD (2011) Tectonothermal history of the Mesoproterozoic Novillo gneiss of eastern Mexico: support for a coherent Oaxaquia microcontinent. Rev Mex Cien Geol 28:580–592Google Scholar
  92. Van Staal CR, Hatcher RD Jr (2010) Global setting of Ordovician orogenesis. In: Finney SC, Berry WBN (eds) The Ordovician earth system. Geol Soc Am Sp Pap 466: 1–11Google Scholar
  93. Vega-Granillo R, Salgado-Souto S, Herrera-Urbina S, Valencia V, Ruiz J, Meza-Figueroa D, Talavera-Mendoza O (2008) U–Pb detrital zircon data of the Rio Fuerte formation (NW Mexico): its peri-Gondwanan provenance and exotic nature in relation to southwestern North America. J S Am Earth Sci 26:343–354CrossRefGoogle Scholar
  94. Verma SP, Torres-Alvarado IS, Sotelo-Rodríguez ZT (2002) SINCLAS: standard igneous norm and volcanic rock classification system. Comput Geosci 28:711–715CrossRefGoogle Scholar
  95. Verma SK, Pandarinath K, Verma SP (2012) Statistical evaluation of tectonomagmatic discrimination diagrams for granitic rocks and proposal of new discriminant-function-based multi-dimensional diagrams for acid rocks. Int Geol Rev 54:325–347CrossRefGoogle Scholar
  96. Weber B, Scherer EE, Schulze C, Valencia VA, Montecinos P, Mezger K, Ruiz J (2010) U-Pb and Lu-Hf isotope systematics of lower crust from Central-Southern Mexico – geodynamic significance of Oaxaquia in a Rodinia realm. Precambrian Res 182:149–162CrossRefGoogle Scholar
  97. Weber B, González-Guzmán R, Manjarrez-Juárez R, de León AC, Martens U, Solari L, Valencia V (2018) Late Mesoproterozoic to early Paleozoic history of metamorphic basement from the southeastern Chiapas massif complex, Mexico, and implications for the evolution of NW Gondwana. Lithos 300:177–199CrossRefGoogle Scholar
  98. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187CrossRefGoogle Scholar
  99. Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Geoanal Res 19:1–23CrossRefGoogle Scholar
  100. Zhu RZ, Lai SC, Santosh M, Qin JF, Zhao SW (2017) Early cretaceous Na-rich granitoids and their enclaves in the Tengchong block, SW China: magmatism in relation to subduction of the Bangong–Nujiang Tethys ocean. Lithos 286:175–190CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Eduardo Alejandro Alemán-Gallardo
    • 1
  • Juan Alonso Ramírez-Fernández
    • 1
    Email author
  • Augusto Antonio Rodríguez-Díaz
    • 2
  • Fernando Velasco-Tapia
    • 1
  • Uwe Jenchen
    • 1
  • Esther María Cruz-Gámez
    • 1
  • Lorena De León-Barragán
    • 3
  • Ignacio Navarro-De León
    • 1
  1. 1.Universidad Autónoma de Nuevo LeónFacultad de Ciencias de la TierraLinaresMexico
  2. 2.Universidad Nacional Autónoma de MéxicoInstituto de Geofísica, Ciudad UniversitariaCiudad de MéxicoMexico
  3. 3.Universidad Nacional Autónoma de MéxicoCentro de GeocienciasQuerétaroMexico

Personalised recommendations