Mineralogy and Petrology

, Volume 113, Issue 4, pp 477–491 | Cite as

Mineral textures of olivine minette and their significance for crystallization history of parental magma; an example from the Moldanubian Zone (the Bohemian Massif)

  • Šárka KubínováEmail author
  • Shah Wali Faryad
Original Paper


One of the best-preserved dykes of olivine minette among the lamprophyre dyke swarm in the Moldanubian Zone of the Bohemian Massif (Czech Republic) was investigated. The minette, exposed at Horní Kožlí Village (near Prachatice town), has porphyric texture with phenocrysts of olivine, clinopyroxene, orthopyroxene and biotite in a fine-grained matrix consisting of K-feldspar, biotite, clinopyroxene and minor plagioclase and quartz. Accessory minerals are apatite, Cr-rich spinel and iron sulphides. Olivine is mostly replaced by talc and rimmed by two zones (coronas) – a talc-rich inner zone and a biotite-rich outer zone. Rarely, larger grains of quartz with a corona of clinopyroxene are present. The clinopyroxene grows mostly perpendicular to the quartz rim and radially penetrates the quartz crystal. Three stages of mineral crystallization were distinguished. The first stage with apatite, olivine, biotite, spinel, orthopyroxene and part of the clinopyroxene occurred in the mantle position. During the second stage, felsic phases (K-feldspar, plagioclase, quartz) in the matrix were crystallized. The enrichment of the residual melt by silica and Na occurred as the result of both fractionation and contamination during magma ascent through the granulite facies crust during post-collision orogeny in the Bohemian Massif. Minerals related to the third stage were formed during filling of the vesicles (quartz with reaction rims of clinopyroxene) and subsequent alteration (talc after olivine). The origin of quartz with clinopyroxene reaction rims (‘quartz ocelli’) is explained by filling of cavities formed by the escape of volatiles.


Minette Dyke swarm Ultrapotassic magmatism Bohemian massif 



This work was supported by the Czech Science Foundation (research project number 18-03160S) and by Charles University through project Progress Q45. We thank R. Jedlicka and M. Racek for help with microprobe analyses. We thank C.-J. De Hoog for very helpful reviews and M.A.T.M. Broekmans for editorial handling.


  1. Abdelfadil KM, Romer LR, Glodny J (2014) Mantle wedge metasomatism revealed by Li isotopes in orogenic lamprophyres. Lithos 196-197:14–26CrossRefGoogle Scholar
  2. Ackerman L, Pašava J, Erban V (2013) Re-Os geochemistry and geochronology of the Ransko gabbro-peridotite massif, Bohemian Massif. Miner Deposita 48:799–804CrossRefGoogle Scholar
  3. Arai S (1978) Chromian spinel lamellae in olivine from the Isanai-Dake peridotite mass, Hokkaido, Japan. Earth Planet Sci Lett 39:267–273CrossRefGoogle Scholar
  4. Awdankiewicz M (2010) Petrogenesis of the Late Paleozoic lamprophyres and related mafic rocks of the Sudetes, SW Poland. Mineralogia, Special Papers 37:20–25Google Scholar
  5. Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Mineral Petrol 107:27–40CrossRefGoogle Scholar
  6. Bratzdrum C, Grapes R, Gieré R (2009) Late-stage hydrothermal alteration and heteromorphism of calc–alkaline lamprophyre dykes in Late Jurassic Granite, Southeast China. Lithos 113:820–830CrossRefGoogle Scholar
  7. Bussy F, Ayrton S (1990) Quartz textures in dioritic rocks of hybrid origin. Schweiz Mineral Petrogr Mitt 70:223–235Google Scholar
  8. Davies JH, von Blanckenburg F (1995) Slab breakoff: a model of lithospheric detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett 129:85–102CrossRefGoogle Scholar
  9. Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51:431–435CrossRefGoogle Scholar
  10. Dudíková-Schulmannová B, Barnet I, Čížek D, Hejmánková P, Hroch T, Holub F, Janderková J, Košuličová M, Kotková J, Kryštofová E, Krupička J, Martínek K, Nahodilová R, Pacherová P, Poňavič M, Skácelová Z, Trubačová A, Verner K, Žáčková E (2014) Explanatory notes to the basic geological map of the Czech Republic 1: 25 000, 22-344 Vlachovo Březí (in Czech). Česká geologická služba, Praha, 178 ppGoogle Scholar
  11. Edgar AD, Condliffe E, Barnett RL, Shirran RJ (1980) An experimental study of an olivine ugandite magma and mechanisms for the formation of its K-enriched derivatives. J Petrol 21:475–497CrossRefGoogle Scholar
  12. Ehrenberg SN (1982) Rare earth element geochemistry of garnet lherzolite and megacrystalline nodules from minette of the Colorado Plateau province. Earth Planet Sci Lett 57:191–210CrossRefGoogle Scholar
  13. Falloon TJ, Green DH (1988) Anhydrous partial melting of peridotite from 8 to 35 kb and the petrogenesis of MORB. Journal of Petrology, Special Lithosphere Issue, 379–414Google Scholar
  14. Faryad SW, Jedlicka R, Hauzenberger C, Racek M (2018) High-pressure crystallization vs. recrystallization origin of garnet pyroxenite-eclogite within subduction related lithologies. Miner Petrol 112(5):603–616CrossRefGoogle Scholar
  15. Faryad SW, Kachlík V, Sláma J, Hoinkes G (2015) Implication of corona formation in a metatroctolite to the granulite facies overprint of HP–UHP rocks in the Moldanubian Zone (Bohemian Massif). J Metamorph Geol 33:295–310CrossRefGoogle Scholar
  16. Faryad SW, Kachlík V, Sláma J, Jedlicka R (2016) Coincidence of gabbro and granulite formation 1 and their implication for Variscan HT metamorphismin the Moldanubian Zone (Bohemian Massif), example from the Kutná Hora Complex. Lithos 264:56–69CrossRefGoogle Scholar
  17. Faryad SW, Nahodilová R, Dolejš D (2010) Incipient eclogite facies metamorphism in the Moldanubian granulites revealed by mineral inclusions in garnet. Lithos 114:54–69CrossRefGoogle Scholar
  18. Finger F, Roberts MP, Haunschmid B, Schermaier A, Steyrer HP (1997) Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations. Miner Petrol 61:67–96CrossRefGoogle Scholar
  19. Foley SF (1990) A review and assessment of experiments on Kimberlites, Lamproites and Lamprophyres as a guid to their Origin. Proceedings of the Indian Academy of Sciences - Earth and Planetary Sciences 99:57–80Google Scholar
  20. Foley SF, Venturelli G, Green DH, Toscani L (1987) The ultrapotassic rocks: characteristics, classification and constraints for petrogenetic models. Earth Sci Rev 24:81–134CrossRefGoogle Scholar
  21. Foster MD (1960) Interpretation of the composition of trioctahedral micas. U. S. Geol Surv Prof Pap 354-B:11–46Google Scholar
  22. Gasparik T (2003) Phase diagrams for geoscientists. An atlas of the Earth’s interior. Springer, New York, 462 ppCrossRefGoogle Scholar
  23. Grütter H, Latti D, Menzies A (2006) Cr-saturation arrays in concentrate garnet compositions from kimberlite and their use in mantle barometry. J Petrol 47:801–820CrossRefGoogle Scholar
  24. Gupta AK, Green DH (1989) The liquidus surface of the system forsterite-kalsilite-quartz at 28 kbar under dry conditions, in the presence of H2O, and of CO2. Miner Petrol 39:163–174CrossRefGoogle Scholar
  25. Har N, Rusu A-M (2000) Diffusion coronas around quartz xenocrysts in basaltic andesite from Capus (Cionca Hill, Gilau Mountains - Romania). Studia Universitatis Babes-Bolyai, Geologia XLV:35–45CrossRefGoogle Scholar
  26. Holub FV (1997) Ultrapotassic plutonic rocks of the durbachite series in the Bohemian Massif: petrology, geochemistry and petrogenetic interpretation. Journal of Geological Sciences - Economic Geology, Mineralogy 31:5–26Google Scholar
  27. Holub FV (1999) Geochemistry and significance of dyke swarms in the Central Bohemian Plutonic Complex. Geolines 8:28Google Scholar
  28. Holub FV (2007) Dyke swarms in the area of the Central Bohemian Plutonic Complex: their matter variations and relationships to the plutonic rocks (in Czech), vol 3. sjezd České geologické společnosti, VolaryGoogle Scholar
  29. Holub FV, Cocherie A, Rossi P (1997a) Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex (Czech Republic): constraints on the chronology of thermal and tectonic events along the Moldanubian-Barrandian boundary. C R Acad Sci Ser IIA Earth Planet Sci 325:19–26Google Scholar
  30. Holub FV, Klečka M, Matějka D (1995) Moldanubian zone: igneous activity. In: Dallmeyer D, Franke W, Weber K (eds) Pre-Permian Geology of Central and Eastern Europe. Springer, Berlin, pp 444–452CrossRefGoogle Scholar
  31. Holub FV, Machart J, Manová M (1997b) The Central Bohemian Plutonic Complex: Geology, chemical composition and genetic interpretation. Sborník geologických věd, Ložisková geologie, mineralogie LG 31:27–50Google Scholar
  32. Holub FV, Verner K, Schmitz MD (2012) Temporal relations of melagranite porphyry dykes and durbachitic plutons in South Bohemia (in Czech). Zprávy o geologických výzkumech v roce 2011, Česká geologická služba 23–25Google Scholar
  33. Holub FV, Verner K, Studená M, Orságová L (2009) Dyke swarms of ultrapotassic melasyenite to melagranite porphyries from the Central Bohemian Plutonic Complex and the Šumava part of the Moldanubicum (in Czech). Zprávy o geologických výzkumech v roce 2008, Česká geologická služba 17–20Google Scholar
  34. Hrouda F, Verner K, Kubínová Š, Buriánek D, Faryad SW, Chlupáčová M, Holub F (2016) Magnetic fabric and emplacement of dykes of lamprophyres and related rocks of the Central Bohemian Dyke Swarm (Central European Variscides). J Geosci 61:335–354CrossRefGoogle Scholar
  35. Janoušek V, Brainthwaite CJR, Bowes DR, Gerdes A (2004) Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic. Lithos 78:67–99CrossRefGoogle Scholar
  36. Janoušek V, Gerdes A (2003) Timing the magmatic activity within the Central Bohemian Pluton, Czech Republic: conventional U-Pb ages for the Sázava and Tábor intrusions and their geotectonic significance. J Czech Geol Soc 48:70–71Google Scholar
  37. Janoušek V, Rogers G, Bowes DR (1995) Sr-Nd isotopic constraints on the petrogenesis of the Central Bohemian Pluton, Czech Republic. Geol Rundsch 84:520–534CrossRefGoogle Scholar
  38. Janoušek V, Wiegand B, Žák J (2010) Dating the onset of Variscan crustal exhumation in the core of the Bohemian Massif: new U–Pb single zircon ages from the high-K calc-alkaline granodiorites of the Blatná suite, Central Bohemian Plutonic Complex. J Geol Soc, London 167:347–360CrossRefGoogle Scholar
  39. Klemme S (2004) The influence of Cr on the garnet-spinel transition in the Earth's mantle: experiments in the system MgO-Cr2O3-SiO2 and thermodynamic modelling. Lithos 77:639–646CrossRefGoogle Scholar
  40. Košler J, Konopásek J, Sláma J, Vrána S (2014) U-Pb zircon provenance of Moldanubian metasediments in the Bohemian Massif. J Geol Soc 171:83–95CrossRefGoogle Scholar
  41. Kovaříková P, Siebel W, Jelínek E, Štemprok M, Kachlík V, Holub FV, Blecha V (2007) Petrology, geochemistry and zircon ages for redwitzite at Abertamy, NW Bohemian Massif (Czech Republic): tracing the mantle component in Late Variscan intrusions. Chem Erde 67:151–174CrossRefGoogle Scholar
  42. Krmíček L (2010) Pre-Mesozoic lamprophyres and lamproites of the Bojemian Massif (Czech Republic, Poland, Germany, Austria). Mineralogia, Special Papers 37:37–46Google Scholar
  43. Krmíček L, Cempírek J, Havlín A, Přichystal A, Houzar S, Krmíčková M, Gadas P (2011) Mineralogy and petrogenesis of a Ba-Ti-Zr-rich peralkaline dyke from Šebkovice (Czech Republic): recognition of the most lamproitic Variscan intrusion. Lithos 121:74–86CrossRefGoogle Scholar
  44. Krmíček L, Romer RL, Ulrych J, Glodny J, Prelević D (2016) Petrogenesis of orogenic lamproites of the Bohemian Massif: Sr-Nd-Pb-Li isotope constraints for Variscan enrichment of ultra-depleted mantle domains. Gondwana Res 35:198–2016CrossRefGoogle Scholar
  45. Kröner A, Wendt I, Liew TC, Compston W, Todt W, Fiala J, Vaňková V, Vaněk J (1988) U–Pb zircon and Sm–Nd model ages of high-grade Moldanubian metasediments, Bohemian Massif, Czechoslovakia. Contrib Mineral Petrol 99:257–266CrossRefGoogle Scholar
  46. Kubínová Š, Faryad SW, Verner K, Schmitz M, Holub F (2017) Ultrapotassic dykes in the Moldanubian Zone and their significance for understanding of the post-collisional mantle dynamics during Variscan orogeny in the Bohemian Massif. Lithos 272–273:205–221CrossRefGoogle Scholar
  47. Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova S, Keller J, Lameyre J, Sabine PA, Schmid R, Sørensen H, Woolley AR (2002) Igneous Rocks. A Classification and Glossary of Terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, 2nd edn. Cambridge University Press, Cambridge, 236 ppCrossRefGoogle Scholar
  48. Lindsley DH (1983) Pyroxene thermometry. Am Mineral 68:477–493Google Scholar
  49. Luth WC (1967) Studies in the system KAlSiO4-Mg2SiO4-SiO2-H2O: I, Inferred phase relations and petrologic applications. J Petrol 8:372–416CrossRefGoogle Scholar
  50. MacGregor ID (1970) The effect of CaO, Cr2O3, Fe2O3 and Al2O3 on the stability of spinel and garnet peridotites. Phys Earth Planet Inter 3:372–377CrossRefGoogle Scholar
  51. Medaris LG, Beard BL, Jelínek E (2006) Mantle-derived, UHP garnet pyroxenite and eclogite in the Moldanubian Gföhl Nappe, Bohemian Massif: a geochemical review, new P–T determinations, and tectonic interpretation. Int Geol Rev 48:765–777CrossRefGoogle Scholar
  52. Mitchell RH, Bergman SC (1991) Petrology of Lamproites. Plenum Press, NewYork, 447 ppCrossRefGoogle Scholar
  53. Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1989) Nomenclature of pyroxenes. Can Mineral 27:143–156Google Scholar
  54. Nahodilová R, Faryad SW, Dolejš D, Tropper P, Konzett J (2011) High-pressure partial melting and melt loss in felsic granulites in the Kutná Hora complex, Bohemian Massif (Czech Republic). Lithos 125:641–658CrossRefGoogle Scholar
  55. O’Neill HSC (1981) The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contrib Mineral Petrol 77:185–194CrossRefGoogle Scholar
  56. O'Neill HSC, Wall VJ (1987) The olivine-orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the earth's upper mantle. J Petrol 28:1169–1191CrossRefGoogle Scholar
  57. Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69(1):61–120CrossRefGoogle Scholar
  58. Rock NMS (1984) Nature and origin of calc-alkaline lamprophyres: minettes, vogesites, kersantites and spessartites. Earth Sci 74:193–227Google Scholar
  59. Rock NMS (1987) The nature and origin of lamprophyres: an overview. Geol Soc Lond, Spec Publ 30:191–226CrossRefGoogle Scholar
  60. Rock NMS (1991) Lamprophyres. Blackie and Son Ltd, London, 275 ppCrossRefGoogle Scholar
  61. Ryabchikov ID, Green DH (1978) The role of carbon dioxide in the petrogenesis of highly potassic magmas. Akademiya Nauk SSSR, Institute of Geology and Geophysics 403:49–64Google Scholar
  62. Scarrow JH, Molina JF, Bea F, Montero P, Vaughan APM (2011) Lamprophyre dikes as tectonic markers of late orogenic transtension timing and kinematics: a case study from the Central Iberian Zone. Tectonics 30(TC4007):1–22Google Scholar
  63. Schalterger U (1997) Magma pulses in the Central Variscan Belt: episodic melt generation and emplacement during lithospheric thinning. Terra Nova 9:242–245CrossRefGoogle Scholar
  64. Schulmann K, Kröner A, Hegner E, Wendt I, Konopásek J, Lexa O, Štípská P (2005) Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan orogen, BohemianMassif, Czech Republic. Am J Sci 305:407–448CrossRefGoogle Scholar
  65. Siebel W, Chen F, Satir M (2003) Late-Variscan magmatism revised: new implications from Pb-evaporation zircon ages on the emplacement of redwitzites and granites in NE Bavaria. Int J Earth Sci 92:36–53CrossRefGoogle Scholar
  66. Štemprok M, Dolejš D, Holub FV (2014) Late Variscan calc-alkaline lamprophyres in the Krupka ore district, Eastern Krušné hory/Erzgebirge: their relationship to Sn-W mineralization. J Geosci 59:41–68CrossRefGoogle Scholar
  67. Vaughan APM, Scarrow JH (2003) K-rich mantle metasomatism control of localization and initiation of lithospheric strike-slip faulting. Terra Nova 15:163–169CrossRefGoogle Scholar
  68. Verma SP, Torres-Alvarado IS, Velasco-Tapia FT (2003) A revised CIPW norm. Schweiz Mineral Petrogr Mitt 83:197–216Google Scholar
  69. von Seckendorf V, Timmerman MJ, Kramer W, Wrobel P (2004) New 40Ar/39Ar ages and geochemistry of Late Carboniferous–Early Permian lamprophyres and related volcanic rocks in the Saxothuringian Zone of the Variscan Orogen (Germany). In: Wilson M, Neumann ER, Timmermann GR, Heremans M, Larsen BT (eds) Permo-Carboniferous 106 Magmatism and Rifting in Europe, vol 223. Geological Society, London, Special Publications, pp 335–359Google Scholar
  70. Vrána S, Blümel P, Petrakakis K (1995) Metamorphic evolution of the Moldanubian Zone. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian Geology of Central and Eastern Europe. Springer, Berlin, pp 453–466CrossRefGoogle Scholar
  71. Wendt JI, Kröner A, Fiala J, Todt W (1993) Evidence from zircon dating for existence of approximately 2.1 Ga old crystalline basement in southern Bohemia, Czech Republic. Geol Rundsch 82:42–50CrossRefGoogle Scholar
  72. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187CrossRefGoogle Scholar
  73. Žák J, Verner K, Finger F, Faryad SW, Chlupáčová M, Veselovský F (2011) The generation of voluminous S-type granites in the Moldanubian unit, Bohemian Massif, by rapid isothermal exhumation of the metapelitic middle crust. Lithos 121:25–40CrossRefGoogle Scholar
  74. Žák J, Verner K, Janoušek V, Holub FV, Kachlík V, Finger F, Hajná J, Tomek F, Vondrovic L, Trubač J (2014) A plate-kinematic model for the assembly of the Bohemian Massif constrained by structural relations around granitoid plutons. Geol Soc Spec Publ 405:169–196CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Petrology and Structural GeologyCharles UniversityPragueCzech Republic

Personalised recommendations