Advanced mineral characterization and petrographic analysis by μ-EDXRF, LIBS, HSI and hyperspectral data merging

  • Wilhelm NikonowEmail author
  • Dieter Rammlmair
  • Jeannet A. Meima
  • Martin C. Schodlok
Original Paper


Petrography and mineralogy are fundamental for understanding processes in various geoscientific fields. Plutonic rock nomenclature is based on mineralogical composition. Therefore, identifying and quantifying minerals is a key for plutonic rock classification. To accomplish this, novel advancements in instrumentations, such as energy dispersive x-ray fluorescence mapping (μ-EDXRF) or hyperspectral imaging (HSI) provide fast and non-destructively spatially resolved and large-scale chemical information. This work describes a comprehensive approach to combine chemical, mineralogical and textural information from μ-EDXRF, Laser Induced Breakdown Spectroscopy (LIBS) and HSI for petrographic analysis of plutonic rocks. Using supervised classification of spectral information, mineral distribution maps are obtained for image analysis including geometrical data of each grain, such as grain size, grain orientation and grain location for subsequent targeted analysis and the modal mineralogy for plutonic rock classification in a QAPF-diagram for 20 rock slabs. The combination of the three mapping techniques can provide valuable information within the limit of each technique such as of spatial resolution or element sensitivity, but with little time needed for sample preparation and measurement. In general, it is an objective, repeatable and quantifiable way for modal mineralogy and petrographic image analysis.


μ-EDXRF LIBS Hyperspectral imaging Automated mineralogy Image analysis Rock classification 



The results of this work are part of research that is funded by the German Federal Ministry of Education and Research (BMBF) within the project SecMinStratEl (033R118B). We are thankful to Professor Gerhard Heide from the Bergakademie TU Freiberg for the fruitful discussions and Katarzyna Krasniqi for parts of the mineral database.

Supplementary material

710_2019_657_Fig10_ESM.png (5.1 mb)

(PNG 5174 kb)

710_2019_657_MOESM1_ESM.eps (60.1 mb)
High Resolution Image (EPS 61500 kb)


  1. Adams JB, Goullaud LH (1978) Plagioclase feldspars-Visible and near infrared diffuse reflectance spectra as applied to remote sensing. In: Lunar and Planetary Science Conference Proceedings, pp 2901–2909Google Scholar
  2. Barnes SJ, Mole DR, Le Vaillant M, Campbell MJ, Verrall MR, Roberts MP, Evans NJ (2016) Poikilitic textures, heteradcumulates and zoned orthopyroxenes in the Ntaka Ultramafic Complex, Tanzania: implications for crystallization mechanisms of oikocrysts. J Petrol 57:1171–1198Google Scholar
  3. Barnes SJ, Le Vaillant M, Lightfoot PC (2017) Textural development in sulfide-matrix ore breccias in the Voisey's Bay Ni-Cu-Co deposit, Labrador, Canada. Ore Geol Rev 90:414–438.
  4. Belissont R, Muñoz M, Boiron M-C, Luais B, Mathon O (2016) Distribution and oxidation state of Ge, Cu and Fe in sphalerite by μ-XRF and K-edge μ-XANES: insights into Ge incorporation, partitioning and isotopic fractionation. Geochim Cosmochim Acta 177:298–314CrossRefGoogle Scholar
  5. Borovik-Romanova T, Kalita E (1958) Cesium-rubidium microcline-perthite and its rare alkali metal content. Geochem: 141–150Google Scholar
  6. Cáceres JO et al (2017) Megapixel multi-elemental imaging by Laser-Induced Breakdown Spectroscopy, a technology with considerable potential for paleoclimate studies. Sci Rep 7(5080).
  7. Cerny P, Meintzer RE, Anderson AJ (1985) Extreme fractionation in rare-element granitic pegmatites; selected examples of data and mechanisms. Can Mineral 23:381–421Google Scholar
  8. Chayes F (1949) A simple point counter for thin-section analysis. Am Mineral 34:1–11Google Scholar
  9. Clark RN, King TV, Klejwa M, Swayze GA, Vergo N (1990) High spectral resolution reflectance spectroscopy of minerals. J Geophys Res B: Solid Earth 95:12653–12680CrossRefGoogle Scholar
  10. Croudace IW, Rothwell RG (2015) Micro-XRF Studies of Sediment Cores: Applications of a non-destructive tool for the environmental sciences vol 17. SpringerGoogle Scholar
  11. dos Reis Salles R, de Souza Filho CR, Cudahy T, Vicente LE, Monteiro LVS (2017) Hyperspectral remote sensing applied to uranium exploration: A case study at the Mary Kathleen metamorphic-hydrothermal U-REE deposit, NW, Queensland, Australia. J Geochem Explor 179:36–50CrossRefGoogle Scholar
  12. Eggleton R, Banfield J (1985) The alteration of granitic biotite to chlorite. Am Mineral 70:902–910Google Scholar
  13. Fabre C, Boiron M-C, Dubessy J, Chabiron A, Charoy B, Crespo TM (2002) Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy: an exploratory study. Geochim Cosmochim Acta 66:1401–1407CrossRefGoogle Scholar
  14. Figueroa R et al (2014) Characteristics of a robust and portable large area X-ray fluorescence imaging system. X-Ray Spectrom 43:126–130CrossRefGoogle Scholar
  15. Flude S, Haschke M, Storey M, Harvey J (2017) Application of benchtop micro-XRF to geological materials. Mineral Mag 81:923–948CrossRefGoogle Scholar
  16. Flude S, Storey M (2016) 40Ar/39Ar age of the Rotoiti Breccia and Rotoehu Ash, Okataina Volcanic Complex, New Zealand, and identification of heterogeneously distributed excess 40Ar in supercooled crystals. Quat Geochronol 33:13–23CrossRefGoogle Scholar
  17. French J, Morgan R, Davy J (2014) The secondary transfer of gunshot residue: an experimental investigation carried out with SEM-EDX analysis. X-Ray Spectrom 43:56–61CrossRefGoogle Scholar
  18. Gauthier G, Burke AL, Leclerc M (2012) Assessing XRF for the geochemical characterization of radiolarian chert artifacts from northeastern North America. J Archaeol Sci 39:2436–2451CrossRefGoogle Scholar
  19. Geil EC, Thorne RE (2014) Correcting for surface topography in X-ray fluorescence imaging. J Synchrotron Radiat 21:1358–1363CrossRefGoogle Scholar
  20. Gergely F, Osán J, Szabó BK, Török S (2016) Analytical performance of a versatile laboratory microscopic X-ray fluorescence system for metal uptake studies on argillaceous rocks. Spectrochim Acta Part B At Spectrosc 116:75–84CrossRefGoogle Scholar
  21. Glagolev AA (1933) On the geometrical methods of quantitative mineralogic analysis of rocks. Trans Inst Econ Min Moscow 59:1–47Google Scholar
  22. Harmon RS et al (2009) LIBS analysis of geomaterials: Geochemical fingerprinting for the rapid analysis and discrimination of minerals. Appl Geochem 24:1125–1141CrossRefGoogle Scholar
  23. Heier K (1962) Trace elements in feldspars—a review. Nor Geol Tidsskr 42:415–454Google Scholar
  24. Heier KS (1960) Petrology and geochemistry of high-grade metamorphic and igneous rocks on Langøy, Northern Norway. vol 207. Norges Geol.UndersGoogle Scholar
  25. Hunt GR (1977) Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 42:501–513CrossRefGoogle Scholar
  26. Hunt GR, Salisbury JW (1970) Visible and near-infrared spectra of minerals and rocks: I silicate minerals. Mod Geol 1:283–300Google Scholar
  27. Hunt GR, Salisbury JW, Lenhoff CJ (1973) Visible and near infrared spectra of minerals and rocks. VI Additional silicates Modern geology 4:85–106Google Scholar
  28. Kéri A, Osán J, Fábián M, Dähn R, Török S (2016) Combined X-ray microanalytical study of the Nd uptake capability of argillaceous rocks. X-Ray Spectrom 45:54–62CrossRefGoogle Scholar
  29. Krasniqi K (2015) Automatisierte Gesteinscharakterisierung mittels hyperspektraler Auswertung ortsauflösender EDXRF-Analyse. MA thesis, Leibniz Universität HannoverGoogle Scholar
  30. Kruse F, Lefkoff A, Boardman J, Heidebrecht K, Shapiro A, Barloon P, Goetz A (1993) The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sens Environ 44:145–163CrossRefGoogle Scholar
  31. Kuhn K, Meima JA, Rammlmair D, Ohlendorf C (2016) Chemical mapping of mine waste drill cores with laser-induced breakdown spectroscopy (LIBS) and energy dispersive X-ray fluorescence (EDXRF) for mineral resource exploration. J Geochem Explor 161:72–84CrossRefGoogle Scholar
  32. Le Bas M, Streckeisen A (1991) The IUGS systematics of igneous rocks. J Geol Soc 148:825–833CrossRefGoogle Scholar
  33. Le Maitre R et al (2002) Igneous rocks. A classification and glossary of terms. Recommendations of the IUGS Subcomission on the Systematics of Igneous Rocks. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  34. Lombi E, de Jonge MD, Donner E, Ryan CG, Paterson D (2011) Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors. Anal Bioanal Chem 400:1637–1644CrossRefGoogle Scholar
  35. Melcher F, Oberthür T, Rammlmair D (2006) Geochemical and mineralogical distribution of germanium in the Khusib Springs Cu–Zn–Pb–Ag sulfide deposit, Otavi Mountain Land, Namibia. Ore Geol Rev 28:32–56CrossRefGoogle Scholar
  36. Nikonow W, Rammlmair D (2016) Risk and benefit of diffraction in Energy Dispersive X-ray fluorescence mapping. Spectrochim Acta B At Spectrosc 125:120–126CrossRefGoogle Scholar
  37. Nikonow W, Rammlmair D (2017) Automated mineralogy based on micro-energy-dispersive X-ray fluorescence microscopy (μ-EDXRF) applied to plutonic rock thin sections in comparison to a mineral liberation analyzer. Geosci Instrum Method Data Syst 6:429–437CrossRefGoogle Scholar
  38. Nikonow W, Rammlmair D, Krasniqi K (2015) EDXRF-based Quantitative Mineralogy and Rock Nomenclature for Granitoids. In: 12th International Congress for Applied Mineralogy, IstanbulGoogle Scholar
  39. Piñon V, Mateo M, Nicolas G (2013) Laser-induced breakdown spectroscopy for chemical mapping of materials. Appl Spectrosc Rev 48:357–383CrossRefGoogle Scholar
  40. Poonoosamy J, Curti E, Kosakowski G, Grolimund D, Van Loon LR, Mäder U (2016) Barite precipitation following celestite dissolution in a porous medium: A SEM/BSE and μ-XRD/XRF study. Geochim Cosmochim Acta 182:131–144CrossRefGoogle Scholar
  41. Poulet F, Bibring J, Mustard J, Gendrin A (2005) Phyllosilicates on Mars and implications for early Martian climate. Nature 438:623CrossRefGoogle Scholar
  42. Ramanaidou E, Schodlok M (2012) Hyperspectral Mapping of Bif and Iron Ores. In: AGU Fall Meeting AbstractsGoogle Scholar
  43. Rammlmair D, Tacke K, Jung H (2001) Application of new XRF-scanning techniques to monitor crust formation in column experiments. In: Securing the Future, Proceedings of the International Conference on Mining and the Environment, Skellefteå, pp 683–692Google Scholar
  44. Rammlmair D, Wilke M, Rickers K, Schwarzer R, Möller A, Wittenberg A (2006) Geology, mining, metallurgy. In: Handbook of Practical X-Ray Fluorescence Analysis, Springer, Heidelberg, pp 640–687Google Scholar
  45. Shanahan TM et al. (2008) Scanning micro-X-ray fluorescence elemental mapping: A new tool for the study of laminated sediment records Geochem Geophys Geosyst 9Google Scholar
  46. Sierralta, M, Katzschmann, L, Nikonow, W, and Rammlmair, D (2015) Insights in Bleßberg cave: speleothem chronology and geochemical research, Annual meeting DGG, Hanover 147Google Scholar
  47. Silveira J, Godinho J, Mata A, Carvalho M, Pessanha S (2015) Assessment of teeth elemental content using μ-EDXRF: effects by in-office and at-home bleaching products. X-Ray Spectrom 44:3–6CrossRefGoogle Scholar
  48. Smith JV (1974) Feldspar Minerals. Tom 2. Chemical and Textural Properties. Springer-Verlag,Google Scholar
  49. Sobańska K (2009) Geneza pegmatytów miarolitycznych z okolic Strzegomia. Magister Thesis, Adam Mickiewicz University in PoznanGoogle Scholar
  50. Solodov N (1971) Scientific principles of perspective evaluation of rare-element pegmatites Publ. House Nauka Moscow 591Google Scholar
  51. Solomon M (1963) Counting and sampling errors in modal analysis by point counter. J Petrol 4:367–382CrossRefGoogle Scholar
  52. Streckeisen A (1976) To each plutonic rock its proper name. Earth-Sci Rev 12:1–33CrossRefGoogle Scholar
  53. Sweetapple MT, Tassios S (2015) Laser-induced breakdown spectroscopy (LIBS) as a tool for in situ mapping and textural interpretation of lithium in pegmatite minerals. Am Mineral 100:2141–2151CrossRefGoogle Scholar
  54. van der Meer FD et al (2012) Multi- and hyperspectral geologic remote sensing: A review. Int J Appl Earth Obs Geoinf 14:112–128CrossRefGoogle Scholar
  55. Zaini N, van der Meer F, van der Werff H (2014) Determination of Carbonate Rock Chemistry Using Laboratory-Based Hyperspectral Imagery. Remote Sens 6:4149CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Federal Institute for Geosciences and Natural Resources (BGR)HanoverGermany

Personalised recommendations