Advertisement

Mineralogy and Petrology

, Volume 113, Issue 2, pp 229–236 | Cite as

Kruijenite, Ca4Al4(SO4)F2(OH)16·2H2O, a new mineral with microporous structure from the Eifel paleovolcanic region, Germany

  • Nikita V. ChukanovEmail author
  • Natalia V. Zubkova
  • Günter Blass
  • Igor V. Pekov
  • Dmitry A. Varlamov
  • Dmitriy I. Belakovskiy
  • Dmitry A. Ksenofontov
  • Sergey N. Britvin
  • Dmitry Yu. Pushcharovsky
Original Paper
  • 25 Downloads

Abstract

The new mineral kruijenite, ideally Ca4Al4(SO4)F2(OH)16·2H2O, was found in a calcic xenolith from tephra of the Feuerberg paleovolcano situated near Daun, Eifel paleovolcanic region, Rhineland-Palatinate, Germany. It is associated with fluorite, calcite, aragonite, cuspidine, magnesioferrite, hematite, sharyginite, harmunite, and an insufficiently investigated hydrous Ca-Mg-Al silicate. Kruijenite occurs as pale greenish-yellow to colourless long prismatic tetragonal crystals up to 0.1 mm × 1 mm in cavities typically combined in radiating or random aggregates. The mineral is brittle, with Mohs’ hardness of 3; Dcalc is 2.573 g/cm3. The IR spectrum is given. Kruijenite is optically uniaxial (−), ω = 1.576(3), ε = 1.561(3). The chemical composition (wavelength dispersive spectrometer Oxford INCA Wave 700 EPMA analyser, H2O calculated from structural data) is: CaO 32.38 wt%, Al2O3 27.75 wt%, Cr2O3 1.45 wt%, SO3 8.09 wt%, F 5.84 wt%, H2O 25.64 wt%, –O=F –2.46 wt%, total 98.69 wt%. The empirical formula is Ca4.00(Al3.77Cr0.13)Σ3.90(SO4)0.70F2.13(OH)16.17·1.79H2O (Z = 2). Kruijenite is tetragonal, space group P4/ncc, a = 12.9299(4) Å, c = 5.2791(3) Å, V = 882.57(6) Å3, Z = 2. The crystal structure was solved and refined to R = 0.121. Kruijenite represents a novel structure type. Its structure is based on the microporous pseudo-framework built by Al(OH)6 octahedra and CaF2(OH)6 polyhedra. The strongest reflections of the powder X-ray diffraction pattern [d (I) (hkl)] are: 9.12 Å (77%) (110), 4.565 Å (100%) (220), 4.084 Å (50%) (310), 2.964 Å (74%) (321), 2.694 Å (27%) (411), 2.321 Å (24%) (431), 2.284 Å (29%) (511), 2.217 Å (22%) (321, 530), 1.971 Å (40%) (611). The mineral is named in honor of the Dutch collector of Eifel minerals Fred Kruijen (born in 1956).

Keywords

Kruijenite New mineral Hydrous calcium aluminium fluorosulfate Microporous crystal structure Calcic xenolith Feuerberg quarry Eifel 

Notes

Acknowledgements

Constructive comments of two anonymous reviewers, handling Associate Editor Luca Bindi, and Editor-in-Chief Lutz Nasdala are gratefully acknowledged. This work was partly performed in accordance with the state task, state registration No. 0089-2016-0001. This work was financially supported by the Russian Foundation for Basic Research, grant nos. 18-29-12007-mk (single crystal and powder X-ray diffraction data, determination of the chemical composition and crystal structure) and 18-55-18003 (physical properties, including IR spectroscopy). The technical support by the St. Petersburg State University X-Ray Diffraction Research Resource Center in the powder Xray diffraction studies is acknowledged.

References

  1. Baumgärtl U, Cruse B (2007) Die Mineralien der Vulkaneifel. Aufschluss 58(5–6):257–400 (in German)Google Scholar
  2. Blass G, Graf HW (2001) Neue Mineralienfunde aus der Vulkaneifel. Mineralien Welt 12(1):19–20 (in German)Google Scholar
  3. Brese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Cryst B47:192–197CrossRefGoogle Scholar
  4. Gagné OC, Hawthorne FC (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Cryst B71:562–578Google Scholar
  5. Hentschel G (1987) Die Mineralien der Eifelvulkane. Christian Weise Verlag, München, 177 pp (in German)Google Scholar
  6. Libowitzky E (1999) Correlation of O–H stretching frequencies and O–H···O hydrogen bond lengths in minerals. Monatsh Chem 130:1047–1059Google Scholar
  7. Mandarino JA (1981) The Gladstone-Dale relationship. Part IV. The compatibility concept and its application. Can Mineral 14:498–502Google Scholar
  8. Meyer W (2013) Geologie der Eifel. Schweizerbart, Stuttgart, 704 pp (in German)Google Scholar
  9. Pöllmann H, Witzke T, Kohler H (1997) Kuzelite, [Ca4Al2(OH)12][(SO4)·6H2O], a new mineral from Maroldsweisach/Bavaria, Germany. N Jb Mineral Monatsh 9:423–432Google Scholar
  10. Sheldrick GM (2008) A short history of SHELX. Acta Cryst A64:112–122CrossRefGoogle Scholar
  11. WinXPow Software (2002) STOE and CIE GmbHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Nikita V. Chukanov
    • 1
    Email author
  • Natalia V. Zubkova
    • 2
  • Günter Blass
    • 3
  • Igor V. Pekov
    • 2
    • 4
  • Dmitry A. Varlamov
    • 5
  • Dmitriy I. Belakovskiy
    • 6
  • Dmitry A. Ksenofontov
    • 2
  • Sergey N. Britvin
    • 7
  • Dmitry Yu. Pushcharovsky
    • 2
  1. 1.Institute of Chemical Physics ProblemsRussian Academy of SciencesChernogolovkaRussia
  2. 2.Faculty of GeologyMoscow State UniversityMoscowRussia
  3. 3.EschweilerGermany
  4. 4.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  5. 5.Institute of Experimental MineralogyRussian Academy of SciencesChernogolovkaRussia
  6. 6.Fersman Mineralogical Museum of Russian Academy of SciencesMoscowRussia
  7. 7.Department of CrystallographySt Petersburg State UniversitySt PetersburgRussia

Personalised recommendations