Mineralogy and Petrology

, Volume 113, Issue 2, pp 185–205 | Cite as

Early Precambrian tectono-thermal events in Southern Jilin Province, China: implications for the evolution of Neoarchean to Paleoproterozoic crust in the northeastern North China Craton

  • Zhuang Li
  • En MengEmail author
  • Chaoyang Wang
  • Yangang Li
Original Paper


The early Precambrian basement of the North China Craton, China, records a complex history during the Neoarchean and Paleoproterozoic. Southern Jilin Province is one of the best regions to evaluate the early Precambrian crustal growth of the Eastern Block of the North China Craton. We herein present new zircon cathodoluminescence images, U–Pb dates, trace element and Lu–Hf isotope data for three late Neoarchean tonalitic–trondhjemitic–granodioritic (TTG) gneisses and one Paleoproterozoic mafic dyke from Tonghua region, southern Jilin Province. These results lent convincing support to the occurrence of multiple tectono-thermal events in southern Jilin Province during the Archean and Paleoproterozoic, and shed light on the formation and evolution of continental crust in the northeastern Eastern Block. Zircon LA–ICP–MS U–Pb isotopic analyses indicated three episodes of magmatism. Inherited (or captured) zircons with ages of ca. 2.6 Ga provided strong evidence for a pre-2.5 Ga magmatic event in this region. The second magmatic episode occurred at 2556–2522 Ma, as evidenced by extensive exposures of TTG gneisses. The third episode occurred at ca. 2200 Ma and is recorded by several mafic dykes that intruded the Archean TTG gneisses. Metamorphic zircons yielded consistent ages of 2493–2465 Ma, indicating a regional metamorphic event immediately after the late Neoarchean magmatism in southern Jilin Province. Zircon Hf isotope data of the TTG gneisses indicated that the main phase of crustal growth occurred in the late Neoarchean, with a minor input of Mesoarchean continental crustal materials. The combined geochronological, geochemical, and geological data suggested that the three episodes of crustal growth in the northeastern Eastern Block occurred at 2.8–2.7, 2.6–2.5, and 2.2 Ga.


Crustal growth Zircon U–Pb dating Lu–Hf isotopes Northeastern North China Craton 



Our work was supported financially by the National Natural Science Foundation of China (Grant Numbers: 41572169 and 41872189), the Science Foundation of China University of Petroleum, Beijing (Grant Number: 2462017YJRC032), and the Science Foundation of State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing (Grant Number: PRP/indep-4-1702). We express our gratitude to Dr. Yan Zhan from University of Illinois at Urbana-Champaign and Dr. Zhiwei Wang from Hebei GEO University for their discussions. We thank Journal Editor-in-Chief Dr. Maarten A.T.M. Broekmans, Associate Editor Dr. Qiang Wang, and three anonymous journal reviewers for their constructive comments and careful corrections that led to significant improvement to the manuscript.

Supplementary material

710_2018_649_MOESM1_ESM.xls (22 kb)
ESM 1 (XLS 21 kb)
710_2018_649_MOESM2_ESM.docx (80.8 mb)
ESM 2 (DOCX 82775 kb)


  1. Amelin Y (2005) Meteorite phosphates show constant 176Lu decay rate since 4557 million years ago. Science 310:839–841CrossRefGoogle Scholar
  2. Andersen T (2002) Correction of common lead in U–Pb analyses that do not report 204Pb. Chem Geol 192:59–79CrossRefGoogle Scholar
  3. Baines AG, Cheadle MJ, John BE, Grimes CB, Schwartz JJ, Wooden JL (2009) SHRIMP Pb/U zircon ages constrain gabbroic crustal accretion at Atlantis Bankon the ultraslow-spreading southwest Indian ridge. Earth Planet Sci Lett 287:540–550CrossRefGoogle Scholar
  4. Barker F (1979) Trondhjemites, dacites and related rocks. Elsevier Scientific Publishing Company, AmsterdamGoogle Scholar
  5. Black LP, Kinny PD, Sheraton JW, Delor CP (1991) Rapid production and evolution of late Archaean felsic crust in the Vestfold block of East Antarctica. Precambrian Res 50:283–310CrossRefGoogle Scholar
  6. Blichert-Toft J, Albarède F (1997) The Lu–Hf geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planet Sci Lett 148:243–258CrossRefGoogle Scholar
  7. Bodet FC, Scharer U (2000) Evolution of the SE-Asian continent from U–Pb and Hf isotopes in single grains of zircon and baddeleyite from large rivers. Geochim Cosmochim Acta 64:2067–2091CrossRefGoogle Scholar
  8. Chu NC, Taylor RN, Chavagnac V, Nesbitt RW, Boella RM, Milton JA, German CR, Bayon G, Burton K (2002) Hf isotope ratio analysis using multi–collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. J Anal At Spectrom 17:1567–1574CrossRefGoogle Scholar
  9. Condie KC, Kröner A (2011) The building blocks of continental crust: evidence for a major change in the tectonic setting of continental growth at the end of the Archean. Gondwana Res 23:394–402CrossRefGoogle Scholar
  10. Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. Rev Mineral Geochem 53:469–500CrossRefGoogle Scholar
  11. Diwu CR, Sun Y, Guo AL, Wang HL, Liu XM (2011) Crustal growth in the North China Craton at ~ 2.5 Ga: evidence from in situ zircon U–Pb ages, Hf isotopes and whole-rock geochemistry of the Dengfeng complex. Gondwana Res 20:149–170CrossRefGoogle Scholar
  12. Geng YS, Liu FL, Yang CH (2006) Magmatic event at the end of the Archean in eastern Hebei Province and its geological implication. Acta Geol Sin (English Edition) 80:819–833Google Scholar
  13. Geng YS, Du DL, Ren LD (2012) Growth and reworking of the early Precambrian continental crust in the North China Craton: constraints from zircon Hf isotopes. Gondwana Res 21:517–529CrossRefGoogle Scholar
  14. Grant ML, Wilde SA, Wu F, Yang J (2009) The application of zircon cathodoluminescence imaging, Th–U–Pb chemistry and U–Pb ages in interpreting discrete magmatic and high-grade metamorphic events in the North China Craton at the Archean/Proterozoic boundary. Chem Geol 261:155–171CrossRefGoogle Scholar
  15. Griffin WL, Pearson NJ, Belousova EA, O'Reilly SY, van Achterberg E, Shee SR (2000) The Hf-isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147CrossRefGoogle Scholar
  16. Griffin WL, Belousova EA, Shee SR, Pearson NJ, O'Reilly SY (2004) Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambrian Research 131:231–282Google Scholar
  17. Guo BR, Liu SW, Zhang J, Yan M (2015) Zircon U–Pb–Hf isotope systematics and geochemistry of Helong granite-greenstone belt in southern Jilin Province, China: implications for Neoarchean crustal evolution of the northeastern margin of North China craton. Precambrian Res 271:254–277CrossRefGoogle Scholar
  18. Guo BR, Liu SW, Zhang J, Wang W, Fu JH, Wang MJ (2016) Neoarchean Andean-type active continental margin along the northeastern North China Craton: geochemical and geochronological evidence from metavolcanic rocks in the Jiapigou granite–greenstone belt. Southern Jilin Province Precambrian Res 285:147–169CrossRefGoogle Scholar
  19. Guo BR, Liu SW, Santosh M, Wang W (2017) Neoarchean arc magmatism and crustal growth in the north–eastern North China Craton: evidence from granitoid gneisses in the southern Jilin Province. Precambrian Res 303:30–53CrossRefGoogle Scholar
  20. Hokada T, Horie K, Satish-Kumar M, Ueno Y, Nasheeth A, Mishima K, Shiraishi K (2013) An appraisal of Archaean supracrustal sequences in Chitradurga Schist Belt, Western Dharwar Craton, Southern India. Precambrian Res 227:99–119CrossRefGoogle Scholar
  21. Hoskin PW (2001) Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 28:627–630CrossRefGoogle Scholar
  22. Hou KJ, Li YH, Zou TR, Qu XM, Shi YR, Xie GQ (2007) Laser ablation-MC-ICPMS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrol Sin 23:2595–2604 (in Chinese with English abstract)Google Scholar
  23. Howarth RJ (1998) Improved estimators of uncertainty in proportions, point-counting, and pass-fail test results. Am J Sci 298:594–607CrossRefGoogle Scholar
  24. Iizuka T, Hirata T (2005) Improvements of precision and accuracy in situ Hf isotope microanalysis of zircon using the laser ablation–MC–ICPMS technique. Chem Geol 220:121–137CrossRefGoogle Scholar
  25. Jahn BM, Liu DY, Wan YS, Song B, Wu JS (2008) Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry. Am J Sci 308:232–269CrossRefGoogle Scholar
  26. Jayananda M, Moyen JF, Martin H, Peucat JJ, Auvray B, Mahabaleswar B (2000) Late Archaean (2550–2520 Ma) juvenile magmatism in the eastern Dharwar craton, southern India: constraints from geochronology, Nd–Sr isotopes and wholerock geochemistry. Precambrian Res 99:225–254CrossRefGoogle Scholar
  27. Jiang N, Guo JH, Zhai MG, Zhang SQ (2010) ~2.7 Ga crust growth in the North China Craton. Precambrian Res 139:37–49CrossRefGoogle Scholar
  28. Kinny PD, Maas R (2003) Lu–Hf and Sm–Nd isotope systems in zircon. Rev Mineral Geochem 53:327–341CrossRefGoogle Scholar
  29. Kröner A, Wilde SA, Li JH, Wang KY (2005) Age and evolution of a late Archean to early Palaeozoic upper to lower crustal section in the Wutaishan/Hengshan terrain of northern China. J Asian Earth Sci 24:577–595CrossRefGoogle Scholar
  30. Kröner A, Wilde SA, Zhao GC, O'Brien PJ, Sun M, Liu DY, Wan YS, Liu SW, Guo JH (2006) Zircon geochronology and metamorphic evolution of mafic dykes in the Hengshan complex of northern China: evidence for late Palaeoproterozoic extension and subsequent high-pressure metamorphism in the North China craton. Precambrian Res 146:45–67CrossRefGoogle Scholar
  31. Kusky TM (2011) Comparison of results of recent seismic profiles with tectonic models of the North China craton. J Earth Sci 22:250–259CrossRefGoogle Scholar
  32. Langmuir CH, Vocke RD, Hanson GN, Hart SR (1978) A general mixing equation with applications to Icelandic basalts. Earth Planet Sci Lett 37:380–392CrossRefGoogle Scholar
  33. Li JJ, Shen BF (2000) Geochronology of Precambrian continental crust in Liaoning Province and Jilin Province. Prog Precambrian Res 23:249–255 (in Chinese with English abstract)Google Scholar
  34. Li Z, Chen B (2014) Geochronology and geochemistry of the Paleoproterozoic meta-basalts from the Jiao–Liao–Ji Belt, North China craton: implications for petrogenesis and tectonic setting. Precambrian Res 255:653–676CrossRefGoogle Scholar
  35. Li Z, Wei CJ (2017) Two types of Neoarchean basalts from Qingyuan greenstone belt, North China Craton: Petrogenesis and tectonic implications. Precambrian Res 292:175–193CrossRefGoogle Scholar
  36. Li SZ, Zhao GC (2007) SHRIMP U–Pb zircon geochronology of the Liaoji granitoids: constraints on the evolution of the Paleoproterozoic Jiao–Liao–Ji belt in the eastern block of the North China craton. Precambrian Res 158:1–16CrossRefGoogle Scholar
  37. Li SZ, Zhao GC, Sun M, Han ZZ, Zhao GT, Hao DF (2006) Are the south and north Liaohe groups of North China craton different exotic terranes? Nd isotope constraints Gondwana Res 9:198–208CrossRefGoogle Scholar
  38. Li Z, Chen B, Wang JL (2016a) Geochronological framework and geodynamic implications of mafic magmatism in the Liaodong Peninsula and adjacent regions, North China Craton. Acta Geol Sin (English Edition) 90:138–153Google Scholar
  39. Li Z, Chen B, Wei CJ (2016b) Hadean detrital zircon in the North China Craton. J Mineral Petrol Sci 111:283–291CrossRefGoogle Scholar
  40. Li Z, Chen B, Wei CJ (2017) Is the Paleoproterozoic Jiao–Liao–Ji Belt (North China Craton) a rift? Int J Earth Sci 106:355–375CrossRefGoogle Scholar
  41. Liu Y, Hu Z, Gao S, Günther D, Xu J, Gao C, Chen H (2008) In situ analysis of major and trace elements of anhydrous minerals by LA–ICP–MS without applying an internal standard. Chem Geol 257:34–43CrossRefGoogle Scholar
  42. Liu J, Zhang J, Liu ZH, Yin CQ, Zhao C, Li Z, Yang ZJ, Dou SY (2018) Geochemical and geochronological study on the Paleoproterozoic rock assemblage of the Xiuyan region: new constraints on an integrated rift-and collision tectonic process involving the evolution of the Jiao-Liao-Ji Belt. North China Craton Precambrian Res 310:179–197CrossRefGoogle Scholar
  43. Lu YF (2004) GeoKit–A geochemical toolkit for Microsoft excel. Geochimica 33:459–464 (in Chinese with English abstract)Google Scholar
  44. Lu XP, Wu FY, Guo JH, Wilde SA, Yang JH, Liu XM, Zhang XO (2006) Zircon U–Pb geochronological constraints on the Paleoproterozoic crustal evolution of the eastern block in the North China Craton. Precambrian Res 146:138–164CrossRefGoogle Scholar
  45. Ludwig KR (2003) ISOPLOT 3: a geochronological toolkit for Microsoft excel. Berkeley Geochronology Centre, Spec Publ 4:37–41Google Scholar
  46. Luo Y, Sun M, Zhao GC, Li SZ, Ayers JC, Xia XP, Zhang JH (2008) A comparison of U–Pb and Hf isotopic compositions of detrital zircons from the north and south Liaohe groups: constraints on the evolution of the Jiao–Liao–Ji Belt. North China Craton Precambrian Res 163:279–306CrossRefGoogle Scholar
  47. Maibam B, Gerdes A, Goswami JN (2016) U–Pb and Hf isotope records in detrital and magmatic zircon from eastern and western Dharwar craton, southern India: evidence for coeval Archaean crustal evolution. Precambrian Res 275:496–512CrossRefGoogle Scholar
  48. Manya S, Maboko MAH (2003) Dating basaltic volcanism in the Neoarchaean Sukumaland Greenstone Belt of the Tanzania craton using the Sm–Nd method: implications for the geological evolution of the Tanzania Craton. Precambrian Res 121:35–45CrossRefGoogle Scholar
  49. Meng E, Liu FL, Cai J, Cui Y (2013) Zircon U–Pb and Lu–Hf isotopic and whole–rock geochemical constraints on the protolith and tectonic history of the Changhai metamorphic supracrustal sequence in the Jiao–Liao–Ji Belt, Southeast Liaoning Province, Northeast China. Precambrian Res 233:297–315CrossRefGoogle Scholar
  50. Meng E, Liu FL, Liu PH, Liu CH, Yang H, Wang F, Shi JR, Cai J (2014) Petrogenesis and tectonic significance of Paleoproterozoic meta–mafic rocks from central Liaodong peninsula, Northeast China: evidence from zircon U–Pb dating and in situ Lu–Hf isotopes, and whole-rock geochemistry. Precambrian Res 247:92–109CrossRefGoogle Scholar
  51. Nebel O, Rapp RP, Yaxley GM (2014) The role of detrital zircons in Hadean crustal research. Lithos 190–191:313–327CrossRefGoogle Scholar
  52. Nutman AP, Wan YS, Du LL, Friend CR, Dong CY, Xie HQ, Wang W, Sun HY, Liu DY (2011) Multistage late Neoarchaean crustal evolution of the North China Craton, eastern Hebei. Precambrian Res 189:43–65Google Scholar
  53. Pei FP, Xu WL, Yang DB, Yu Y, Wang W, Zhao QG (2011) Geochronology and geochemistry of Mesozoic mafic-ultramafic complexes in the southern Liaoning and southern Jilin provinces, NE China: constraints on the spatial extent of destruction of the North China Craton. J Asian Earth Sci 40:636–650CrossRefGoogle Scholar
  54. Peng P, Wang C, Wang XP, Yang SY (2015) Qingyuan high-grade granite–greenstone terrain in the eastern North China craton: root of a Neoarchaean arc. Tectonophysics 662:7–21CrossRefGoogle Scholar
  55. Polat A, Kusky T, Li JH, Fryer B, Kerrich R, Patrick K (2005) Geochemistry of Neoarchean (ca. 2.55–2.50 Ga) volcanic and ophiolitic rocks in the Wutaishan greenstone belt, central orogenic belt, North China craton: implications for deodynamic setting and continental growth. Geol Soc Am Bull 117:1387–1399CrossRefGoogle Scholar
  56. Polat A, Appel PWU, Fryer BJ (2011) An overview of the geochemistry of Eoarchean to Mesoarchean ultramafic to mafic volcanic rocks, SW Greenland: implications for mantle depletion and petrogenetic process at subduction zones in the early earth. Gondwana Res 20:255–283CrossRefGoogle Scholar
  57. Pupin JP (1980) Zircon and granite petrology. Contrib Mineral Petrol 73:207–220CrossRefGoogle Scholar
  58. Sarma DS, McNaughton NJ, Belusova E, Mohan MR, Fletcher IR (2012) Detrital zircon U–Pb ages and Hf-isotope systematics from the Gadag Greenstone Belt: Archean crustal growth in the western Dharwar craton, India. Gondwana Res 22:843–854Google Scholar
  59. Scherer E, Münker C, Mezger K (2001) Calibration of the lutetium-hafnium clock. Science 293:683–687CrossRefGoogle Scholar
  60. Shen BF, Li JJ, Mao DB (1997) Geological features types and evolution of greenstone belts in the North China platform. Prog Precambrian Res 20:2–11 (in Chinese with English abstract)Google Scholar
  61. Song B, Nutman AP, Liu DY, Wu JS (1996) 3800–2500 Ma crust in the Anshan area of Liaoning Province, northeastern China. Precambrian Res 78:79–94CrossRefGoogle Scholar
  62. Song S, Niu Y, Wei C, Ji J, Su L (2010) Metamorphism, anatexis, zircon ages and tectonic evolution of the Gongshan block in the northern Indochina continent—an eastern extension of the Lhasa block. Lithos 120:327–346CrossRefGoogle Scholar
  63. Trap P, Faure M, Lin W, Breton NL, Monie P (2012) The Paleoproterozoic evolution of the trans-North China Orogen: toward a synthetic tectonic model. Precambrian Res 222–223:450–473Google Scholar
  64. Wan YS, Liu DY, Wang SJ, Dong CY, Yang EX, Wang W, Zhou HY, Du LL, Yin XY, Xie HQ, Ma MZ (2010) Juvenile magmatism and crustal recycling at the end of Neoarchean in western Shandong Province, North China craton: evidence from SHRIMP zircon dating. Am J Sci 310:1503–1552CrossRefGoogle Scholar
  65. Wan YS, Liu DY, Wang SJ, Yang EX, Wang W, Dong CY, Zhou HY, Du LL, Yang YH, Diwu CR (2011) ~2.7 Ga juvenile crust formation in the North China craton (Taishan-Xintai area, western Shandong Province): further evidence of an understated event from zircon U–Pb dating and Hf isotope composition. Precambrian Res 186:169–180CrossRefGoogle Scholar
  66. Wang AD, Liu YC (2012) Neoarchean (2.5–2.8 Ga) crustal growth of the North China craton revealed by zircon Hf isotope: a synthesis. Geosci Front 3:147–173CrossRefGoogle Scholar
  67. Wang W, Liu SW, Cawood PA, Bai X, Guo RR, Guo BR, Wang K (2016a) Late Neoarchean subduction-related crustal growth in the northern Liaoning region of the North China craton: evidence from ~2.55 to 2.50 Ga granitoid gneisses. Precambrian Res 281:200–223CrossRefGoogle Scholar
  68. Wang MJ, Liu SW, Wang W, Wang K, Yan M, Guo BR, Bai X, Guo RR (2016b) Petrogenesis and tectonic implications of the Neoarchean North Liaoning tonalitic-trondhjemitic gneisses of the North China craton. North China J Asian Earth Sci 131:12–39CrossRefGoogle Scholar
  69. Wilde SA, Zhao GC (2005) Archean to Paleoproterozoic evolution of the North China craton. J Asian Earth Sci 24:519–522CrossRefGoogle Scholar
  70. Wu FY, Zhao GC, Wilde SA, Sun DY (2005) Nd isotopic constraints on crustal formation in the North China craton. J Asian Earth Sci 24:523–545CrossRefGoogle Scholar
  71. Wu FY, Yang YH, Xie LW, Yang JH, Xu P (2006) Hf isotopic compositions of the standard zircons in U–Pb geochronology. Chem Geol 234:105–126CrossRefGoogle Scholar
  72. Wu SJ, Zhang YS, Xing EY (2015) LA–ICP–MS U–Pb dating of detrital zircons of the Ordos Basin metamorphic basement and its tectonic significance. Acta Geol Sin 89:2171–2186Google Scholar
  73. Wu ML, Lin SF, Wan YS, Gao JF (2016) Crustal evolution of the eastern block in the North China craton: constraints from zircon U–Pb geochronology and Lu–Hf isotopes of the northern Liaoning complex. Precambrian Res 275:35–47CrossRefGoogle Scholar
  74. Xie LW, Yang JH, Wu FY, Yang YH, Wilde SA (2011) PbSL dating of garnet and staurolite: constraints on the Paleoproterozoic crustal evolution of the eastern block, North China Craton. J Asian Earth Sci 42:142–154CrossRefGoogle Scholar
  75. Yin A, Nie S (1996) Phanerozoic palinspastic reconstruction of China and its neighboring regions. In: Yin A, Harrison TM (eds) The tectonic evolution of Asia. Cambridge University Press, New York, pp 285–442Google Scholar
  76. Zeh A, Gerdes A, Jr JMB (2009) Archean accretion and crustal evolution of the Kalahari craton – the zircon age and Hf isotope record of granitic rocks from Barberton/Swaziland to the Francistown arc. J Petrol 50:933–966CrossRefGoogle Scholar
  77. Zeh A, Gerdes A, Will TM, Frimmel H (2010) Hafnium isotope homogenization during metamorphic zircon growth in amphibolite-facies rocks: examples from the Shackleton range (Antarctica). Geochim Cosmochim Acta 74:4740–4758CrossRefGoogle Scholar
  78. Zhai MG, Santosh M (2013) Metallogeny of the North China craton: link with secular changes in the evolving earth. Gondwana Res 24:275–297CrossRefGoogle Scholar
  79. Zhao GC, Zhai MG (2013) Lithotectonic elements of Precambrian basement in the North China craton: review and tectonic implications. Gondwana Res 23:1207–1240CrossRefGoogle Scholar
  80. Zhao GC, Wilde SA, Cawood PA, Sun M, Lu LZ (2001) Archaean blocks and their boundaries in the North China craton: lithological, geochemical, structural and P–T path constraints. Precambrian Res 107:45–73CrossRefGoogle Scholar
  81. Zhao GC, Sun M, Wilde SA, Li SZ (2005) Late Archean to Paleoproterozoic evolution of the North China craton: key issues revisited. Precambrian Res 136:177–202CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Zhuang Li
    • 1
    • 2
  • En Meng
    • 3
    Email author
  • Chaoyang Wang
    • 3
  • Yangang Li
    • 4
  1. 1.State Key Laboratory of Petroleum Resources and ProspectingChina University of Petroleum (Beijing)BeijingPeople’s Republic of China
  2. 2.College of GeosciencesChina University of PetroleumBeijingPeople’s Republic of China
  3. 3.Institute of GeologyChinese Academy of Geological SciencesBeijingPeople’s Republic of China
  4. 4.Xi’an Center of geological Survey, China Geological SurveyXi’anPeople’s Republic of China

Personalised recommendations