Advertisement

Mineral chemistry and formation conditions of argentopentlandite-bearing albite veins in a metagabbro of the Sedova Zaimka intrusion, Russia

  • Tatyana V. Svetlitskaya
  • Peter A. Nevolko
Original Paper
  • 33 Downloads

Abstract

This study presents a new occurrence of hydrothermal argentopentlandite, associated with pyrrhotite, chalcopyrite, sphalerite, and galena in albite (± calcite, muscovite, pyrochlore-group minerals, high-Th phases) veins cutting metagabbro of the Sedova Zaimka intrusion, Western Siberia, Russia. The data obtained from petrography, mineral chemistry and fluid inclusion study of the vein-forming minerals do confirm the proposed hydrothermal origin of sulfides and associated gangue minerals from the internally-derived metamorphic fluids generated during potential post-peak contact metamorphic cooling. These ore-forming fluids were Na-dominant and enriched in Si, Al, Fe, Cu, with minor Ca, K, Ta, Nb, U, Th, Zn, Pb, Ni, Ag, Co, Bi, Te, Se, and Cd. They were characterized by moderate temperatures (270–325 °C) and moderate salinities (4.70–7.25 wt% NaCl equiv.) and belong to the NaCl-H2O fluid system with dominant CH4 gas-phase species. It is concluded that the components (metals and other elements) for the vein infill have been transferred from metagabbro by the metamorphic fluid, possibly in a dissolution–transport–precipitation process.

Keywords

Argentopentlandite Albite veins Sulfides Metagabbro Mineral chemistry Fluid inclusions Sedova Zaimka Western Siberia 

Notes

Acknowledgments

We would like to thank reviewers Radostina Atanassova and Thomas N. Kerestedjian and associate editor Anton Beran for their constructive comments which greatly helped to improve this manuscript. This study was funded by the grant of President of the Russian Federation (project no. МК-5159.2018.5). Additional support came from the Russian Foundation for Basic Research (project no. 16-05-00980) and from the fundamental research programs of the VS Sobolev Institute of Geology and Mineralogy of Siberian Branch of Russian Academy of Sciences (basic projects no. 0330-2016-0003 and 0330-2016-0001). All studies were performed at the Analytical Center for Multi-Elemental and Isotope Research SB RAS of the Sobolev Institute of Geology and Mineralogy in Novosibirsk, Russia.

References

  1. Augsten BEK, Thorpe RI, Harris DC, Fedikow M (1986) Ore mineralogy of the Agassiz (MacLellan) gold deposit in the Lynn Lake region, Manitoba. Can Mineral 24(2):369–377Google Scholar
  2. Babin GA, Chernykh AI, Golovina AG, Zhigalov SV, Dolgushin SS, Vetrov EV, Korableva ND, Bodina YF, Svetlova NA, Fedoseev GS, Khilko AP, Epifanov VA, Loskutov YI, Loskutov IY, Mikharevich MV, Pihutin EA (2015) State geological map of the Russian Federation, scale 1:1,000,000 (the third generation), Altay–Sayan series, N-44 (Novosibirsk) (explanatory note). A.P. Karpinsky Russian Geological Research Institute, Saint Petersburg (in Russian)Google Scholar
  3. Barkov AY, Laflamme JHG, Cabri LJ, Martin RF (2002) Platinum-group minerals from the Wellgreen Cu–Ni–PGE deposit, Yukon, Canada. Can Mineral 40:651–669Google Scholar
  4. Benvenuti M (1991) Ni-sulphides from the Bottino mine (Tuscany, Italy). Eur J Mineral 3(1):79–84Google Scholar
  5. Berndt ME, Allen DE, Seyfried WE (1996) Reduction of CO2 during serpentinization of olivine at 300°C and 500 bar. Geology 24(4):351–354Google Scholar
  6. Bodnar RJ (1993) Revised equation and table for determining the freezing point depression of H2O–NaCl solutions. Geochim Cosmochim Ac 57:683–684Google Scholar
  7. Burke EA (2001) Raman microspectrometry of fluid inclusions. Lithos 55:139–158Google Scholar
  8. Cabri LJ (1973) New data on phase relations in the Cu-Fe-S system. Econ Geol 68:443–454Google Scholar
  9. Cabri LJ, Gilles Laflamme JH (1976) The mineralogy of the platinum-group elements from some copper-nickel deposits of the Sudbuty area, Ontario. Econ Geol 71:1159–1195Google Scholar
  10. Cline JS, Vanko DA (1995) Magmatically generated saline brines related to molybdenum at Questa, New Mexico, USA. In: Thompson JFH (ed) Magma, Fluid and Ore Deposit. Min Ass Canada Short Course, vol 23. Mineral Soc Can, Nepean, pp 153–174Google Scholar
  11. Dergachev VB, Glotov AI, Terekhov VN, Brizgin LA (1980) The Sedova Zaimka gabbro-peridotite massive and related sulfide copper-nickel mineralization. Russ Geol Geophys 11:133–138 (in Russian with English abstract)Google Scholar
  12. Dobretsov NI (2005) Large igneous provinces of Asia (250 Ma): Siberian and Emeishan traps (plateau basalts) and associated granitoids. Russ Geol Geophys 46(9):870–890 (in Russian with English abstract)Google Scholar
  13. Dobretsov NL, Vladimirov AG, Kruk NN (2005) Permian-Triassic magmatism in the Altai-Sayan fold system as a reflection of the Siberian Superplume. Dokl Earth Sci 400(1):40–43Google Scholar
  14. Engvik AK, Ihlen PM, Austrheim H (2014) Characterisation of Na-metasomatism in the Sveconorwegian Bamble sector of South Norway. Geosci Front 5(5):659–672Google Scholar
  15. Gervilla F, Papunen H, Kojonen K, Johanson B (1997) Mineralogy of the Pt-, Pd- and Au bearing arsenide ores of the Kylmäkoski Ni–Cu deposit, Vammala nickel belt, SW Finland. Miner Petrol 64:163–185Google Scholar
  16. Glebovitsky VA, Semenov VS, Belyatsky BV, Koptev-Dvornikov EV, Pchelintseva NF, Kireev BS, Koltsov AB (2001) The structure of the Lukkulaisvaara intrusion, Oulanka group, northern Karelia: petrological implications. Can Mineral 39(2):607–637Google Scholar
  17. Glotov AI (1984) Nickel-bearing dolerite-picrite formation of the Novosibirsk Ob Region PhD thesis, Institute of Geology and Geophysics of Siberian Branch of the Academy of Sciences of the Union of Soviet Socialist Republics, Novosibirsk (in Russian)Google Scholar
  18. Glotov AI, Krivenko AP (1990) Permian–Triassic gabbroids of the Novosibirsk Ob Region In: Krivenko AP, Polyakov GV (eds) Copper-nickel-bearing gabbroid formations of the folded regions of Siberia. Nauka, Novosibirsk, pp 146–172 (in Russian)Google Scholar
  19. Goryachev NA, Vikent’eva OV, Bortnikov NS, Prokof’ev VY, Alpatov VA, Golub VV (2008) The world-class Natalka gold deposit, Northeast Russia: REE patterns, fluid inclusions, stable oxygen isotopes, and formation conditions of ore. Geol Ore Deposit 50(5):362–390Google Scholar
  20. Grokhovskaya TL, Bakaev GF, Sholokhnev VV, Lapina MI, Muravitskaya GN, Voitekhovich VS (2003) The PGE ore mineralization in the Monchegorsk magmatic layered complex (Kola peninsula, Russia). Geol Ore Deposit 45(4):287–308Google Scholar
  21. Groves DI, Hall SR (1978) Argentian pentlandite with parkerite, joseite A and the probable bi-analogue of ullmannite from mount Windarra, Western Australia. Can Mineral 16(1):1–7Google Scholar
  22. Ilmen S, Alansari A, Baidada B, Hajjar Z (2017) A new occurrence of argento-pentlandite and gold from the Ait Dawd cu-au ore deposit (Erdouz area, western high atlas, Morocco). The 14th Society for Geology Applied to Mineral Deposits Biennial Meeting, Québec, Canada, pp 151–154Google Scholar
  23. Imai N, Mariko T, Kaneda H, Shiga Y (1980) Compositional variation of pentlandites in copper sulphide ores from the Kamaishi mine, Iwate prefecture, Japan. Mining Geology 30(5):265–276Google Scholar
  24. Ixer RA, Young B, Stanley CJ (1996) Bismuth-bearing assemblages from the northern Pennine Orefield. Mineral Mag 60(2):317–324Google Scholar
  25. Karpov SM (2012) Minerals of precious metals and their typomorphism in massive sulfide ores near Khibiny massif (Kola peninsula). The Proceedings of the Annual Meeting of the RMS and the Fedorov Session, St. Petersburg, pp 125–126 (in Russian)Google Scholar
  26. Kerestedjian TN, Bonev IK (2001) Complex argentopentlandite-mackinawite inclusions in chalcopyrite: a solid state exsolution mechanism. Geochemictry, Mineralogy and Petrology 38:23–33Google Scholar
  27. Kojima S, Sugaki A (1985) Phase relations in the Cu-Fe-Zn-S system between 500o and 300oC under hydrothermal conditions. Econ Geol 80:158–171Google Scholar
  28. Kontny A, Friedrich GH, Herzig P, Keyssner S (1994) Argentian-pentlandite-bearing assemblages in metamorphic rocks of the KTB pilot hole, Oberpfalz, Germany. Can Mineral 32(4):803–814Google Scholar
  29. Kozlovskiy YA, Guberman DM, Kazanskiy VI, Lanev VS, Genkin AD, Glagolev AA, Voronikhin VA, Nartikoyev VD (1988) The ore potential of deep-seated zones of ancient continental crust, based on data from the Kola superdeep Drillhole. Int Geol Rev 30(7):763–771Google Scholar
  30. Krivenko AP, Glotov AI, Kazennov AI, Misyuk VD (1983) Petrology of nickel-bearing picrate-dolerite complex in the Novosibirsk Ob Region In: Kuznetsov YA (ed) Petrology and ore-bearing of magmatic formations of Siberia. Nauka, Novosivirsk, pp 5–48 (in Russian)Google Scholar
  31. Kungurova VY, Stepanov VA, Trukhin YP, Novakov RM (2016) Ores composition of copper–nickel occurrence Annabergite schel (Kamchatka). Gornyj informacionno-analiticheskij bulletin 11(31):42–55 (in Russian with English abstract)Google Scholar
  32. Kungurtsev LV, Fedoseev GS, Shirokikh VА, Obolensky АА, Sotnikov VI, Borisenko АS, Gimon VО (1998) Geodynamic complexes and stages of development of the Kolyvan-Tomsk folded zone. Russ Geol Geophys 39(1):26–37 (in Russian with English abstract)Google Scholar
  33. Maier WD, Barnes S-J, Chinyepi G, Barton JM Jr, Eglington B, Setshedi I (2008) The composition of magmatic Ni–Cu–(PGE) sulfide deposits in the Tati and Selebi-Phikwe belts of eastern Botswana. Mineral Deposita 43(1):37–60Google Scholar
  34. Mandziuk ZL, Scott SD (1977) Synthesis, stability, and phase relations of argentian pentlandite in the system Ag–Fe–Ni–S. Can Mineral 15(3):349–364Google Scholar
  35. Marignac C (1989) Sphalerite stars in chalcopyrite: are they always the result of an unmixing process? Mineral Deposita 24:176–182Google Scholar
  36. Miller JA, Cartwright I (2006) Albite vein formation during exhumation of high-pressure terranes: a case study from alpine Corsica. J Metamorph Geol 24:409–428Google Scholar
  37. Morales-Ruano S, Fenoll Hach-Ali P (1996) Hydrothermal argentopentlandite at El Charcón, southeastern Spain: mineral chemistry and conditions of formation. Can Mineral 34:939–947Google Scholar
  38. Mposkos E (1983) A new occurrence of argentian pentlandite from the Koronuda ore mineralization, Macedonia, Greece. Neues Jb Mineral Monat 5:193–200Google Scholar
  39. Murzin VV, Varlamov DA, Vikent’ev IV (2011) Copper–cobalt mineralization of the Pyshminsk–Klyuchevsk deposit in the middle Urals: mineral composition of ore and metasomatites stages, P–T conditions of mineral formation. Lithosphere (Rus) 6:103–122 (in Russian with English abstract)Google Scholar
  40. Oberthür T, Weiser TW, Gast L, Kojonen K (2003) Geochemistry and mineralogy of platinum-group elements at Hartley platinum mine, Zimbabwe. Part 1. Primary distribution patterns in pristine ores of the Main sulfide zone of the great dyke. Mineral Deposita 38(3):327–343Google Scholar
  41. Petrenko NL, Terekhov VN, Nevolko AI, Kozlova VM (1982) Geological structure and mineral resources of N-44-22B, G and N-44-23-B. Report of the Chaus Geological Survey Unit on deep geological mapping in the scale 1:50,000 in 1977–1982. Novosibirsk (in Russian)Google Scholar
  42. Piestrzyński A, Kowalik K (2015) Argentopentlandite from barite vein in Zagórze Śląskie, lower Silesia; a first occurrence in Poland. Mineralogia 45(1–2):13–25Google Scholar
  43. Piña R, Gervilla F, Ortega L, R Lunar R (2008) Mineralogy and geochemistry of platinum-group elements in the Aguablanca Ni-Cu deposit (SW Spain). Mineral Petrol 92(1–2):259–282Google Scholar
  44. Roedder E (1984) Fluid inclusions. In: Reviews in mineralogy, vol 12. Mineral Soc Am, Reston, Virginia, 644 ppGoogle Scholar
  45. Roslyakov NA, Shcherbakov YG, Alabin LV, Nesterenko GV, Kalinin YA, Roslyakova NV, Vasiliev IP, Nevolko AI, Osintsev SP (2001) Minerageny of the Salair and Kolyvan-Tomsk fold zone conjugated area. SB RAS, geo branch, Novosibirsk, 243 pp (in Russian)Google Scholar
  46. Rudashevskii NS, Mintkenov GA, Karpenkov AM, Shishkin NN (1977) Silver-contemning pentlandite – the independent mineral species, argentopentlandite. Zapiski Vsesoyuznogo mineralogicheskogo obshchestva 106:686–688 (in Russian)Google Scholar
  47. Rudashevskiy NS (1979) Silver-containing pentlandite Ag(Fe,Ni)8S8–the independent mineral species, argentopentlandite. Int Geol Rev 21(6):695–698Google Scholar
  48. Scott SD, Gasparrini EL (1973) Argentian pentlandite, (Fe,Ni)8AgS8, from Bird River, Manitoba. Can Mineral 12:165–168Google Scholar
  49. Sharova OI, Aleksandrov IA, Avchenko OV, Karabtsov AA (2008) First find of silver mineral in metamorphic rocks of the Stanovoi complex. Dokl Earth Sci 419(2):288–290Google Scholar
  50. Shepherd T, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie, Glasgow 224 ppGoogle Scholar
  51. Sishkin MN, Mitenkov GA, Mikhailova VA, Rudashevskii NS, Sidarov AF, Karpenkov AM, Kondrat’ev AV, Bud’ko IA (1971) Pentlandite variety rich in silver. Zapiski Vsesoyuznogo mineralogicheskogo obshchestva 100:184–191 (in Russian)Google Scholar
  52. Sotnikov VI, Fedoseev GS, Kungurtsev LV, Borisenko AS, Obolensky AA, Vasiliev IP, Gimon VO (1999) Geodynamics, magmatism, and metallogeny of the Kolyvan'-Tomsk fold zone. SPC UIGGM, Siberian branch of RAS, Novosibirsk, 227 pp (in Russian)Google Scholar
  53. Spiridonov EM, Kulagov EA, Serova AA, Kulikova IM, Korotaeva NN, Sereda EV, Tushentsova IN, Belyakov SN, Zhukov NN (2015) Genetic Pd, Pt, Au, Ag, and Rh mineralogy in Noril’sk sulfide ores. Geol Ore Deposit 57(5):402–432Google Scholar
  54. Stojanović JN, Radosavljević-Mihajlović AS, Radosavljević SA, Vuković NS, Pačevski AM (2016) Mineralogy and genetic characteristics of the Rudnik Pb-Zn/Cu,Ag,Bi,W polymetallic deposit (Central Serbia)–new occurrence of Pb(Ag)Bi sulfosalts. Period Mineral 85:7–21Google Scholar
  55. Sugaki A, Shima H, Kitakaze A, Harada H (1975) Isothermal phase relations in the system Cu-Fe-S under hydrothermal conditions at 350°C and 300°C. Econ Geol 70(4):806–823Google Scholar
  56. Sugaki A, Kitakaze A, Kojima S (1987) Bulk compositions of intimate intergrowths of chalcopyrite and sphalerite and their genetic implications. Mineral Deposita 22(1):26–32Google Scholar
  57. Svetlitskaya TV (2017) First occurrence of Pd-bearing galena (Sedova Zaimka copper–nickel mineralization, Western Siberia). Dokl Earth Sci 476(1):997–1000Google Scholar
  58. Svetlitskaya TV, Fominykh PA (2018) Cobalt-nickel arsenide–sulfoarsenide mineralization of the Sedova Zaimka intrusion (the Tom'-Kolyvan folded zone). Prospect and protection of mineral resources (Razvedka i ohrana nedr) 8:9–18 (in Russian with English abstract)Google Scholar
  59. Van den Kerkhof AM, Hein UF (2001) Fluid inclusion petrography. Lithos 55:27–47Google Scholar
  60. Verlaguet A, Goffé B, Brunet F, Poinssot C, Vidal O, Findling N, Menut D (2011) Metamorphic veining and mass transfer in a chemically closed system: a case study in alpine metabauxites (western Vanoise). J Metamorph Geol 29:275–300Google Scholar
  61. Vikentjev I (2012) Mineralogy and formation conditions of the Urals volcanogenic massive sulphide deposits. Mineral Rev 62(2):47–58 (in Russian with English abstract)Google Scholar
  62. Vuorelainen Y, Häkli TA, Papunen HP (1972) Argentian pentlandite from some Finnish sulfide deposits. Am Mineral 57:137–145Google Scholar
  63. Weisenberger T, Bucher K (2011) Mass transfer and porosity evolution during low temperature water–rock interaction in gneisses of the Simano nappe: Arvigo, Val Calanca, Swiss Alps. Contrib Mineral Petrol 162:61–81Google Scholar
  64. Yund RA, Kullerud G (1966) Thermal stability of assemblages in the Cu–Fe–S system. J Petrol 7(3):454–488Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.VS Sobolev Institute of Geology and MineralogySiberian Branch of Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations