Mineralogy and Petrology

, Volume 113, Issue 2, pp 237–248 | Cite as

Murashkoite, FeP, a new terrestrial phosphide from pyrometamorphic rocks of the Hatrurim Formation, South Levant

  • Sergey N. BritvinEmail author
  • Yevgeny Vapnik
  • Yury S. Polekhovsky
  • Sergey V. Krivovichev
  • Maria G. Krzhizhanovskaya
  • Liudmila A. Gorelova
  • Oleg S. Vereshchagin
  • Vladimir V. Shilovskikh
  • Anatoly N. Zaitsev
Original Paper


Murashkoite, FeP, is a new mineral found in pyrometamorphic rocks of the Hatrurim Formation, South Levant. It is a typical accessory phase in the marbles and paralavas in the southern Negev Desert, Israel and on the Transjordan Plateau, Jordan. Murashkoite occurs as grains and aggregates up to 2 mm closely associated with barringerite, (Fe,Ni)2P, and zuktamrurite, FeP2. The rock-forming minerals include pyroxenes of the diopside-hedenbergite series, anorthite with subordinate gehlenite, tridymite, cristobalite, pyrrhotite, fluorapatite, chromite, magnetite, hematite, merrillite and late hydrothermal carbonates, silicates and sulfates. Macroscopically, murashkoite is yellowish-grey in colour and has a metallic lustre. In reflected light, the mineral is white with a beige tint and it is non-pleochroic. The anisotropy is distinct, from yellow-grey to greyish-blue. Selected reflectance values [RmaxRmin, % (λ, nm)] are: 42.7–40.8 (400), 42.0–40.6 (500), 44.5–43.4 (600), 48.0–47.7 (700). It is brittle. VHN20 = 468 kg mm−2. The holotype material has the chemical composition (electron microprobe): Fe 63.82; Ni 0.88; P 35.56; total 100.26 wt.%. The empirical formula calculated on the basis of 2 apfu is (Fe0.99Ni0.01)1.00P1.00 corresponding to FeP. Murashkoite is orthorhombic, space group Pnma, unit cell parameters refined from the single-crystal data are: a 5.099(2), b 3.251(2), c 5.695(2) Å, V 94.41(8) Å3, Z = 4, Dx = 6.108(5) g cm−3. The crystal structure was solved and refined to R1 = 0.0305 on the basis of 131 unique reflections with I > 2σ(I). The strongest lines of the powder X-ray diffraction pattern [(d, Å) (I, %) (hkl)]: 2.831(75)(002,011); 2.548(22)(200); 2.477(46)(102,111); 1.975(47)(112); 1.895(100)(202,211); 1.779(19)(103); 1.632(45)(013,301,020). The mineral is named in honour of Dr. Mikhail Nikolaevich Murashko (born 1952), for his contributions to the mineralogy of the Hatrurim Formation. Murashkoite is a natural counterpart of synthetic FeP, the compound widely used in heterogeneous catalysis and electrocatalysis.


Iron phosphide FeP New mineral MnP structure type, murashkoite, barringerite Fe-Ni-P system Pyrometamorphism Meteorite Coal piles Phosphorylation 



This research was supported by the Russian Science Foundation (grant 18-17-00079). The authors thank the Resource Center of X-ray diffraction studies and “Geomodel” Resource Centre of Saint-Petersburg State University for providing instrumental and computational resources. The authors gratefully acknowledge Dr. Chris Stanley and Dr. Evgeny Galuskin for the helpful comments and discussion of the manuscript.

Supplementary material

710_2018_647_MOESM1_ESM.cif (58 kb)
ESM 1 (CIF 57 kb)


  1. Borodaev YS, Bogdanov YA, Vyal’sov LN (1982) New nickel-free variety of schreibersite Fe3P. Zapiski VMO 111:682–687 (Russian)Google Scholar
  2. Britvin SN, Kolomensky VD, Boldyreva MM, Bogdanova AN, Kretser YL, Boldyreva ON, Rudashevsky NS (1999) Nickelphosphide (Ni,Fe)3P – the nickel analog of schreibersite. Zapiski VMO 64–72(Russian):128Google Scholar
  3. Britvin SN, Rudashevsky NS, Krivovichev SV, Burns PC, Polekhovsky YS (2002) Allabogdanite, (Fe,Ni)2P, a new mineral from the Onello meteorite: the occurrence and crystal structure. Am Mineral 87:1245–1249CrossRefGoogle Scholar
  4. Britvin SN, Murasko MN, Vapnik Y, Polekhovsky YS, Krivovichev SV (2015) Earth’s phosphides in Levant and insights into the source of Archaean prebiotc phosphorus. Sci Rep 5:8355CrossRefGoogle Scholar
  5. Britvin SN, Krivovichev SV, Armbruster T (2016) Ferromerrillite, Ca9NaFe2+(PO4)7, a new mineral from the Martian meteorites, and some insights into merrillite-tuite transformation in shergottites. Eur J Mineral 28:125–136CrossRefGoogle Scholar
  6. Britvin SN, Murashko MN, Vapnik E, Polekhovsky YS, Krivovichev SV (2017) Barringerite Fe2P from pyrometamorphic rocks of the Hatrurim Formation, Israel. Geol Ore Deposit 59:619–625CrossRefGoogle Scholar
  7. Britvin SN, Murashko MN, Vapnik E, Polekhovsky YS, Krivovichev SV, Vereshchagin OS, Vlasenko NS, Shilovskikh VV, Zaitsev AN (2018) Zuktamrurite, FeP2, a new mineral, the phosphide analogue of löllingite, FeAs2. Phys Chem Minerals.
  8. Bruker AXS (2009) Topas 4.2. General profile and structure analysis software for powder diffraction data. Karlsruhe, GermanyGoogle Scholar
  9. Bryant DE, Kee TP (2006) Direct evidence for the availability of reactive, water soluble phosphorus on the early Earth. H-Phosphinic acid from the Nantan meteorite. Chem Commun 2006:2344–2346Google Scholar
  10. Bryant DE, Greenfield D, Walshaw RD, Johnson BRG, Herschy B, Smith C, Pasek MA, Telford R, Scowen I, Munshi T, Edwards HGM, Cousins CR, Crawford IA, Kee TP (2013) Hydrothermal modification of the Sikhote-Alin iron meteorite under low pH geothermal environments. A plausibly prebiotic route to activated phosphorus on the early Earth. Geochim Cosmochim Acta 109:90–112CrossRefGoogle Scholar
  11. Buchwald VF (1984) Handbook of Iron meteorites. University of California PressGoogle Scholar
  12. Burg A, Starinsky A, Bartov Y, Kolodny Y (1992) Geology of the Hatrurim formation (“Mottled Zone”) in the Hatrurim basin. Isr J Earth Sci 40:107–124Google Scholar
  13. Burns S, Hargreaves JSJ, Hunter SM (2007) On the use of methane as a reductant in the synthesis of transition metal phosphides. Catal Commun 8:931–935CrossRefGoogle Scholar
  14. Buseck PR (1969) Phosphide from meteorites: barringerite, a new iron-nickel mineral. Science 165:169–171CrossRefGoogle Scholar
  15. Callejas JF, McEnaney JM, Read CG, Crompton JC, Biacchi AJ, Popczun EJ, Gordon TR, Lewis NS, Schaak RE (2014) Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using Iron phosphide nanoparticles. ACS Nano 8:11101–11107CrossRefGoogle Scholar
  16. Clarke RS Jr, Goldstein JI (1978) Schreibersite growth and its influence on the metallography of coarse-structured iron meteorites. Smithson Contrib Earth Sci (21):1–80Google Scholar
  17. Cosca MA, Essene EJ, Geissman JW, Simmons WB, Coates DA (1989) Pyrometamorphic rocks associated with naturally burned coal beds, Powder River Basin, Wyoming. Am Mineral 74:85–100Google Scholar
  18. Dera P, Lavina B, Borkowski LA, Prakapenka VB, Sutton SR, Rivers ML, Downs RT, Boctor NZ, Prewitt CT (2008) High-pressure polymorphism of Fe2P and its implications for meteorites and Earth’s core. Geophys Res Lett 35:L10301CrossRefGoogle Scholar
  19. Dera P, Lazarz JD, Lavina B (2011) Pressure-induced development of bonding in NiAs type compounds and polymorphism of NiP. J Solid State Chem 184:1997–2003CrossRefGoogle Scholar
  20. Dera P, Nisar J, Ahuja R, Tkachev S, Prakapenka VB (2013) New type of possible hige-pressure polymorphism in NiAs minerals in planetary cores. Phys Chem Miner 40:183–193CrossRefGoogle Scholar
  21. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341CrossRefGoogle Scholar
  22. Fiebig J, Woodland AB, Spangenberg J, Oschmann W (2007) Natural evidence for rapid abiogenic hydrothermal generation of CH4. Geochim Cosmochim Acta 71:3028–3039CrossRefGoogle Scholar
  23. Fleurance S, Cuney M, Malartre F, Reyx J (2013) Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous–Early Tertiary Belqa Group, central Jordan. Palaeogeogr Palaeoclimatol Palaeoecol 369:201–219CrossRefGoogle Scholar
  24. Galuskin EV, Galuskina IO, Kusz J, Armbruster T, Marzec KM, Dzierzanowski P, Murashko M (2014) Vapnikite Ca3UO6 a new double-perovskite mineral from pyrometamorphic larnite rocks of the Jabel Harmun, Palestinian Autonomy, Israel. Mineral Mag 78:571–581CrossRefGoogle Scholar
  25. Galuskin EV, Galuskina IO, Gfeller F, Kruger B, Kusz J, Vapnik Y, Dulski M, Dzierzanowski P (2016) Silicocarnotite, Ca5[(SiO4)(PO4)](PO4), a new ,,old” mineral from the Negev Desert, Israel, and the ternesitesilicocarnotite solid solution: indicators of high-temperature alteration of pyrometamorphic rocks of the Hatrurim Complex, Southern Levant. Eur J Mineral 28:105–123Google Scholar
  26. Galuskin EV, Gfeller F, Galuskina IO, Armbruster T, Krzatala A, Vapnik Y, Kusz J, Dulski M, Gardocki M, Gurbanov AG, Dzierzanowski P (2017) New minerals with a modular structure derived from hatrurite from the pyrometamorphic rocks. Part III. Gazeevite, BaCa6(SiO4)2(SO4)2O, from Israel and the Palestine Autonomy, South Levant, and from South Ossetia, Greater Caucasus. Mineral Mag 81:499–514CrossRefGoogle Scholar
  27. Galuskina IO, Vapnik Y, Lazic B, Armbruster T, Murashko M, Galuskin EV (2014) Harmunite CaFe2O4: a new mineral from the Jabel Harmun, West Bank, Palestinian autonomy, Israel. Am Mineral 99:965–975CrossRefGoogle Scholar
  28. Geller YI, Burg A, Halicz L, Kolodny Y (2012) System closure during the combustion metamorphic “Mottled Zone” event, Israel. Chem Geol 334:25–36CrossRefGoogle Scholar
  29. Gfeller F, Widmer R, Krüger B, Galuskin EV, Galuskina IO, Armbruster T (2015) The crystal structure of flamite and its relation to Ca2SiO4 polymorphs and nagelschmidtite. Eur J Mineral 27:755–769CrossRefGoogle Scholar
  30. Grapes R (2006) Pyrometamorphism. Springer-Verlag, Berlin HeidelbergGoogle Scholar
  31. Gross S (1977) The mineralogy of the Hatrurim Formation, Israel. Bull Geol Surv Israel 70:1–80Google Scholar
  32. Gu T, Fei Y, Wu X, Qin S (2016) Phase stabilities and spin transitions of Fe3(S1-xPx) at high pressure and its implications in meteorites. Am Mineral 101:205–210CrossRefGoogle Scholar
  33. Gull M, Mojica MA, Fernandez FM, Gaul DA, Orlando TM, Liotta CL, Pasek MA (2015) Nucleoside phosphorylation be the mineral schreibersite. Sci Rep-UK 5:17198CrossRefGoogle Scholar
  34. Gur D, Steinitz G, Kolodny Y, Starinsky A, McWilliams M (1995) 40Ar/39Ar dating of combustion metamorphism (“Mottled Zone”, Israel). Chem Geol 122:171–184CrossRefGoogle Scholar
  35. Harris DC (1974) Ruthenarsenite and iridarsenite, two new minerals from the territory of Papua and New Guinea and associated irarsite, laurite and cubic iron-bearing platinum. Can Mineral 12:280–284Google Scholar
  36. Horita J, Berndt ME (1999) Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285:1055–1057CrossRefGoogle Scholar
  37. Horsman GP, Zechel DL (2017) Phosphonate biochemistry. Chem Rev 117:5704–5783CrossRefGoogle Scholar
  38. Ivanov AV, Zolensky ME, Saito A, Ohsumi K, Yang SV, Kononkova NN, Mikouchi T (2000) Florenskyite, FeTiP, a new phosphide from the Kaidun meteorite. Am Mineral 85:1082–1086CrossRefGoogle Scholar
  39. Jiang P, Liu Q, Liang Y, Tian J, Asiri AM, Sun X (2014) A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire Array as the active phase. Angew Chem Int Ed 53:12855–12859CrossRefGoogle Scholar
  40. Juroszek R, Krüger H, Galuskina I, Krüger B, Jeżak L, Ternes B, Wojdyla J, Krzykawski T, Pautov L, Galuskin E (2018) Sharyginite, Ca3TiFe2O8, a new mineral from the Bellerberg volcano, Germany. Minerals 8:308CrossRefGoogle Scholar
  41. Kawamura K, Maurel M-C (2017) Walking over 4 Gya: chemical evolution from photochemistry to mineral and organic chemistries leading to an RNA world. Orig Life Evol Biosph 47:281–296CrossRefGoogle Scholar
  42. Khesin B, Vapnik Y, Itkis S (2010) Case history. Geophysical evidence of deep hydrocarbon flow in Mottled Zone areas, Dead Sea Transform zone. Geophysics 75:B91–B101CrossRefGoogle Scholar
  43. Kitadai N, Maruyama S (2018) Origins of building blocks of life: a review. Geosci Front 9:1117–1153CrossRefGoogle Scholar
  44. Kolodny Y, Burg A, Geller YI, Halicz L, Zakon Y (2014) Veins in the combusted metamorphic rocks, Israel; weathering or a retrograde event? Chem Geol 385:140–155CrossRefGoogle Scholar
  45. La Cruz NL, Qasim D, Abbott-Lyon H, Pirim C, McKee AD, Orlando T, Gull M, Lindsay D, Pasek MA (2016) The evolution of the surface of the mineral schreibersite in prebiotic chemistry. Phys Chem Chem Phys 18:20160–20167CrossRefGoogle Scholar
  46. Larsson E (1965) An X-ray investigation of the Ni-P system and the crystal structures of NiP and NiP2. Ark Kemi 23:335–356Google Scholar
  47. Lazoryak BI, Belik AA, Kotov RN, Leonidov IA, Mitberg EB, Karelina VV, Kellerman DG, Stefanovich SY, Avetisov AK (2003) Reduction and Re-? Oxidation behavior of calcium iron phosphate, Ca9Fe(PO4)7. Chem Mater 15:625–631CrossRefGoogle Scholar
  48. Lyman PS, Prewitt CT (1984) Room- and high-pressure crystal chemistry of CoAs and FeAs. Acta Cryst B 40:14–20CrossRefGoogle Scholar
  49. Ma C, Beckett JR, Rossman GR (2014) Monipite, MoNiP, a new phosphide mineral in a Ca-Al-rich inclusion from the Allende meteorite. Am Mineral 99:198–205CrossRefGoogle Scholar
  50. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006) Mercury: visualization and analysis of crystal structures. J Appl Crystallogr 39:453–457CrossRefGoogle Scholar
  51. Makovicky E (2006) Crystal structures of sulfides and other chalcogenides. Rev Mineral Geochem 61:7–125CrossRefGoogle Scholar
  52. Murashko MN, Chukanov NV, Mukhanova AA, Vapnik E, Britvin SN, Krivovichev SV, Polekhovskii YS, Ivakin YD (2010) Barioferrite BaFe3+12O19 – a new magnetoplumbite-group mineral from Hatrurim formation, Israel. Zapiski VMO 139:22–31 (Russian)Google Scholar
  53. Nishanbaev TP, Rochev AV, Kotlyarov VA (2002) Iron phosphides from the burned coal dumps of Chelyabinsk coal basin. Uralsky Geol J 25(1):105–114 (Russian)Google Scholar
  54. Novikov I, Vapnik Y, Safonova I (2013) Mud volcano origin of the Mottled Zone, south Levant. Geosci Front 4:597–619CrossRefGoogle Scholar
  55. Oen IS, Burke EAJ, Kieft C, Westerhof AB (1972) Westerveldite (Fe,Ni,Co) As, a new mineral from La Gallega, Spain. Am Mineral 57:354–363Google Scholar
  56. Pasek MA (2017) Schreibersite on the early Earth: scenarios for prebiotic phosphorylation. Geosci Front 8:329–335CrossRefGoogle Scholar
  57. Pasek M, Block K (2009) Lightning-induced reduction of phosphorus oxidation state. Nat Geosci 2:553–556CrossRefGoogle Scholar
  58. Pasek MA, Dworkin JP, Lauretta DS (2007) A radical pathway for organic phosphorylation during schreibersite corrosion with implications for the origin of life. Geochim Cosmochim Acta 71:1721–1736CrossRefGoogle Scholar
  59. Pasek MA, Gull M, Herschy B (2017) Phosphorylation on the early earth. Chem Geol 475:149–170CrossRefGoogle Scholar
  60. Pedersen AK (1981) Armalcolite-bearing Fe-Ti oxide assemblages in graphite equilibrated salic volcanic rocks with native iron from Disko, Central West Greenland. Contrib Mineral Petrol 77:307–324CrossRefGoogle Scholar
  61. Pirim C, Pasek MA, Sokolov DA, Sidorov AN, Gann RD, Orlando TM (2014) Investigation of schreibersite and intrinsic oxidation products from Sikhote-Alin, Seymchan, and Odessa meteorites and Fe3P and Fe2NiP synthetic surrogates. Geochim Cosmochim Acta 140:259–274CrossRefGoogle Scholar
  62. Plyashkevich AA, Minyuk PS, Subbotnikova TV, Alshevsky AV (2016) Newly formed minerals of the Fe-P-S system in Kolyma fulgurite. Dokl Earth Sci 467(2):380–383CrossRefGoogle Scholar
  63. Pouchou JL, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In: Heinrich KFJ, Newbury DE, Eds., Electron Probe Quantitation, New YorkGoogle Scholar
  64. Pratesi G, Bindi L, Moggi-Cecci V (2006) Icosahedral coordination of phosphorus in the crystal structure of melliniite, a new phosphide mineral from the northwest Africa 1054 acapulcoite. Am Mineral 91:451–454CrossRefGoogle Scholar
  65. Prins R, Bussell ME (2012) Metal phosphides: preparation, characterization and catalytic reactivity. Catal Lett 142:1413–1436CrossRefGoogle Scholar
  66. Rudashevsky NS, Motshalov AG, Trubkin NV, Shumskaya NM, Shkursky VI, Evstigneeva TL (1985) Cherepanovite RhAs – a new mineral. Zapiski VMO 114:464–469 (Russian)Google Scholar
  67. Scheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Cryst C71:3–8Google Scholar
  68. Schonberg N (1954) An X-ray investigation of transition metal phosphides. Acta Chem Scand 3:226–239CrossRefGoogle Scholar
  69. Scott HP, Huggins S, Frank MR, Maglio SJ, Martin CD, MengY SJ, Williams Q (2007) Equation of state and high-pressure stability of Fe3P-schreibersite: implications for phosphorus storage in planetary cores. Geophys Res Lett 34:L06302CrossRefGoogle Scholar
  70. Seryotkin YV, Sokol EV, Kokh SN (2012) Natural pseudowollastonite: crystal structure, associated minerals, geological context. Lithos 134–135:75–90CrossRefGoogle Scholar
  71. Sharygin VV, Vapnik Y, Sokol EV, Kamenetsky VS, Shagam R (2006) Melt inclusions in minerals of schorlomite-rich veins of the Hatrurim Basin, Israel: composition and homogenization temperatures. ACROFII program with abstracts, Nanjing University PH. China:189–192Google Scholar
  72. Sharygin VV, Lazic B, Armbruster TM, Murashko MN, Wirth R, Galuskina IO, Galuskin EV, Vapnik Y, Britvin SN, Logvinova AM (2013) Shulamitite Ca3TiFe3+AlO8 – a new perovskite-related mineral from Hatrurim Basin, Israel. Eur J Mineral 25:97–111CrossRefGoogle Scholar
  73. Shaw CSJ (2009) Caught in the act – the first few hours of xenolith assimilation preserved in lavas of the Rockeskyllerkopf volcano, West Eifel, Germany. Lithos 112:511–523CrossRefGoogle Scholar
  74. Shemesh A, Kolodny Y, Luz B (1983) Oxygen isotope variations in phosphate of biogenic apatites, II. Phosphorite rocks. Earth Planet Sci Lett 64:405–416CrossRefGoogle Scholar
  75. Sokol EV, Maksimova NV, Nigmatulina EN, Sharygin VV, Kalugin VM (2005) Combustion metamorphism. Publishing House of the SB RAS–Novosibirsk, 284 p (Russian)Google Scholar
  76. Sokol EV, Novikov IS, Vapnik Y, Sharygin VV (2007) Gas fire from mud volcanoes as a trigger for the appearance of high-temperature pyrometamorphic rocks of the Hatrurim Formation (Dead Sea area). Dokl Earth Sci 413A:474–480CrossRefGoogle Scholar
  77. Sokol E, Novikov I, Zateeva S, Vapnik Y, Shagam R, Kozmenko O (2010) Combustion metamorphic rocks as indicators of fossil mud volcanism: new implications for the origin of the Mottled Zone, Dead Sea rift area. Basin Res 22:414–438CrossRefGoogle Scholar
  78. Sokol EV, Seryotkin YV, Kokh SN, Vapnik Y, Nigmatulina EN, Goryainov SV, Belogub EV, Sharygin VV (2015) Flamite, (Ca,Na,K)2(Si,P)O4, a new mineral from ultrahightemperature combustion metamorphic rocks, Hatrurim Basin, Negev Desert, Israel. Mineral Mag 79:583–596CrossRefGoogle Scholar
  79. Stoe & Cie (2006). X-AREA and X-RED32. Stoe & Cie, Darmstadt, GermanyGoogle Scholar
  80. Tremel W, Hoffmann R, Silvestre J (1986) Transitions between NiAs and MnP type phases: an electronically driven distortion of triangular (36) nets. J Am Chem Soc 108:5174–5187CrossRefGoogle Scholar
  81. Vapnik Y, Sharygin V, Sokol E, Shagam R (2007) Paralavas in a combustion metamorphic complex, Hatrurim Basin, Israel. GSA Rev Eng Geol XVIII:133–153Google Scholar
  82. Vapnik Y, Palchika V, Galuskina I, Banasik K, Krzykawski T (2018) Mineralogy, chemistry and rock mechanic parameters of katoite-bearing rock from the Hatrurim Basin, Israel. J. Afr. Earth Sci 147:322–330CrossRefGoogle Scholar
  83. Weber D, Bischoff A (1994) Grossite (CaAl4O7) - a rare phase in terrestrial rocks and meteorites. Eur J Mineral 6:591–594CrossRefGoogle Scholar
  84. Yang JS, Bai WJ, Rong H, Zhang ZM, Xu ZQ, Fang QS, Yang BG, Li TF, Ren YF, Chen SY, Hu J-Z, Su JF, Mao HK (2005) Discovery of Fe2P alloy in garnet peridotite from the Chinese continental scientific drilling project (CCSD) main hole. Acta Petrol Sin 21:271–276Google Scholar
  85. Zolensky M, Gounelle M, Mikouchi T, Ohsumi K, Le L, Hagiya K, Tachikawa O (2008) Andreyivanovite: a second new phosphide from the Kaidun meteorite. Am Mineral 93:1295–1299CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Sergey N. Britvin
    • 1
    • 2
    Email author
  • Yevgeny Vapnik
    • 3
  • Yury S. Polekhovsky
    • 1
  • Sergey V. Krivovichev
    • 1
    • 2
  • Maria G. Krzhizhanovskaya
    • 1
  • Liudmila A. Gorelova
    • 1
  • Oleg S. Vereshchagin
    • 1
  • Vladimir V. Shilovskikh
    • 4
  • Anatoly N. Zaitsev
    • 1
  1. 1.Institute of Earth SciencesSaint Petersburg State UniversitySt. PetersburgRussia
  2. 2.Nanomaterials Research CenterKola Science Center of Russian Academy of SciencesApatityRussia
  3. 3.Department of Geological and Environmental SciencesBen-Gurion University of the NegevBeer-ShevaIsrael
  4. 4.Geomodel Resource CenterSaint Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations