Advertisement

Mineralogy and Petrology

, Volume 113, Issue 2, pp 249–259 | Cite as

Crystal chemistry of dorrite from the Eifel volcanic region, Germany, and chemical variations in the khesinite-dorrite-rhönite-kuratite solid-solution system

  • Nadezhda V. ShchipalkinaEmail author
  • Igor V. Pekov
  • Nikita V. Chukanov
  • Natalya N. Koshlyakova
  • Bernd Ternes
  • Willi Schüller
Original Paper
  • 40 Downloads

Abstract

Dorrite, khesinite and rhönite from metamorphosed calcic xenoliths of the Bellerberg paleovolcano (Eifel, Germany) were studied, including first determination of the crystal structure of natural dorrite (R = 0.0636). Dorrite is triclinic, P-1, unit-cell parameters are: a = 10.4316(7), b = 10.8236(9), c = 8.9488(7) Å, α = 105.972(6), β = 96.003(9), γ = 124.67(10)° and V = 754.10(11) Å3. Its crystal-chemical formula is (Z = 1): M8Ca2M9Ca2M1Fe3 + M2Fe3 + M3(Fe3+0.8Mg0.2)2M4(Fe3+0.8Mg0.2)2M5(Mg0.9Fe3+0.1)2M6(Mg0.5Fe3+0.5)2M7(Fe3+0.9Al0.1)2[T1(Al0.75Si0.20Fe3+0.05)2T2(Al0.77Si0.20Fe3+0.03)2T3(Al0.9Fe3+0.1)2T4Si2T5(Fe3+0.6Al0.4)2T6(Fe3+0.6Al0.4)2]O40. New and earlier published data show that khesinite, dorrite, rhönite and kuratite form a solid-solution system without significant gaps. The chemical variation and isomorphous substitutions in this system are discussed and the following simplified formulae are suggested: dorrite, Ca2(Fe3+,Mg)5Mg[(Al,Fe3+,Si)5SiO20], khesinite, Ca2(Fe3+,Mg)5Mg[(Fe3+,Al,Si)5SiO20], and rhönite, Ca2(Mg,Fe3+)5Ti[(Si,Al)6O20].

Keywords

Dorrite Khesinite Rhönite Crystal structure Metamorphosed xenolith Bellerberg volcano Eifel volcanic region 

Notes

Acknowledgements

We are grateful to Sergey M. Aksenov for collecting of single-crystal XRD data and to anonymous reviewers for valuable comments. This study was supported by the Russian Science Foundation, grant no. 14-17-00048 (in part of electron probe studies of minerals), and the Russian Foundation for Basic Research, grant no. 18-05-00332 (in part of crystal structure studies).

References

  1. Agilent Technologies (2014) CrysAlisPro software system, version 1.171.37.35. Agilent Technologies UK Ltd Oxford, UKGoogle Scholar
  2. Bonaccorsi E, Merlino S, Pasero M (1990) Rhönite: structural and microstructural features, crystal chemistry and polysomatic relationships. Eur J Mineral 2:203–218CrossRefGoogle Scholar
  3. Chesnokov BV, Shcherbakova EP (1991) The mineralogy of burnt dumps in the Chelyabinsk Coal Basin. Nauka Publishing, Moscow (in Russian)Google Scholar
  4. Chesnokov BV, Bushmakin AF, Bazhenova LF, Vilisov VA, Kretser YL, Nishanbaev TP (1993a) New minerals from burnt dumps of the Chelyabinsk coal basin (fourth report). Ural’skiy Mineralogicheskiy Sbornik 1:3–25 (in Russian)Google Scholar
  5. Chesnokov BV, Vilisov VA, Bazhenova LF, Bushmakin AF, Kotlyarov VA (1993b) New minerals from burnt dumps of the Chelyabinsk coal basin (fifth report). Ural’skiy Mineralogicheskiy Sbornik 2:3–36 (in Russian)Google Scholar
  6. Chesnokov BV, Shcherbakova EP, Nishanbaev TP (2008) Minerals of burned dumps of the Chelyabinsk Coal Basin. Institute of Mineralogy, RAS Ural Branch (in Russian)Google Scholar
  7. Chukanov NV, Rozenberg KA, Rastsvetaeva RK, Möckel S (2008) New data on titanium-rich biotite: a problem of “wodanite”. New Data Miner 43:72–77Google Scholar
  8. Chukanov NV, Mukhanova AA, Rastsvetaeva RK, Belakovskiy DI, Möckel S, Karimova OV, Britvin SN, Krivovichev SV (2011) Oxyphlogopite K(mg,Ti,Fe)3[(Si,Al)4O10](O,F)2: a new mineral species of the mica group. Geol Ore Dep 53(7):583–590CrossRefGoogle Scholar
  9. Cosca MA, Rouse RR, Essene EJ (1988) Dorrite [Ca2(Mg2Fe3+ 4)(Al4Si2)O20], a new member of the aenigmatite group from a pyrometamorphic melt-rock. Am Mineral 73:1440–1448Google Scholar
  10. Galuskina IO, Galuskin EV, Pakhomova AS, Widmer R, Armbruster T, Grew ES, Vapnik Y, Dzierażanowski P, Murashko M (2017) Khesinite, Ca4Mg2Fe3+ 10O4[(Fe3+ 10Si2)O36], a new rhönite-group (sapphirine supergroup) mineral from the Negev Desert, Israel– natural analogue of the SFCA phase. Eur J Mineral 29:101–116CrossRefGoogle Scholar
  11. Grapes RH, Keller J (2010) Fe2+-dominant rhönite in undersaturated alkaline basaltic rocks, Kaiserstuhl volcanic complex, upper Rhine graben, SW Germany. Eur J Mineral 22:285–292CrossRefGoogle Scholar
  12. Grapes RH, Wysoczanski RJ, Hoskin PWO (2003) Rhönite paragenesis in pyroxenite xenoliths, mount Sidley volcano, Marie Byrd Land, West Antarctica. Mineral Mag 67:639–651CrossRefGoogle Scholar
  13. Grew ES, Hålenius U, Pasero M, Barbier J (2008) Recommended nomenclature for the sapphirine and surinamite groups (sapphirine supergroup). Mineral Mag 72:839–876CrossRefGoogle Scholar
  14. Hentschel G. (1987) Die Mineralien der Eifelvulkane, Weise Verlag, München. 2nd Edition (in German)Google Scholar
  15. Hwang SL, Shen P, Chu HT, Yui TF, Varela ME, Iizuka Y (2016) Kuratite, Ca4(Fe2+ 10Ti2)O4[Si8Al4O36], the Fe2+-analogue of rhönite, a new mineral from the D'Orbigny angrite meteorite. Mineral Mag 80:1067–1076CrossRefGoogle Scholar
  16. Jensen BB (1996) Solid solution among members of the aenigmatite group. Mineral Mag 60:982–986CrossRefGoogle Scholar
  17. Johnston AD (1985) Compositional variation of naturally occurring rhoenite. Am Mineral 70:1211–1216Google Scholar
  18. Kunzmann T (1999) The aenigmatite-rhönite mineral group. Eur J Mineral 11:743–756CrossRefGoogle Scholar
  19. Merlino S (1972) X-ray crystallography of krinovite. Z Kristallogr 136:81–88CrossRefGoogle Scholar
  20. Mills SJ, Hatert F, Nickel EH, Ferraris G (2009) The standardization of mineral group hierarchies: application to recent nomenclature proposals. Eur J Mineral 21:1073–1080CrossRefGoogle Scholar
  21. Peretyazhko IS, Savina EA, Khrоmova EA (2017) Minerals of the rhönite-kuratite series in paralavas from a new combustion metamorphic complex in the choir–Nyalga basin (Central Mongolia): composition, mineral assemblages and formation conditions. Mineral Mag 81:949–974CrossRefGoogle Scholar
  22. Petříček V, Dušek M, Palatinus L (2006) Jana2006. Structure determination software programs. Institute of Physics, Praha, Czech RepublicGoogle Scholar
  23. Schüller W (2013) Microminerals of the Bellerberg Volcanics, Eifel region, Rhineland Palatinate, Germany. Mineral Rec 44:149–185Google Scholar
  24. Shchipalkina NV, Zubkova NV, Pekov IV, Koshlyakova NN (2016) Dorrite from Kopeisk, south Urals, Russia: crystal structure and cation ordering. N Jb Mineral Mh 193(3):275–282CrossRefGoogle Scholar
  25. Sugiyama K, Monkawa A, Sugiyama K (2005) Crystal structure of the SFCAM phase Ca2(Ca,Fe,Mg,Al)6(Fe,Al,Si)6O20. ISIJ Int 45:560–568Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Nadezhda V. Shchipalkina
    • 1
    • 2
    Email author
  • Igor V. Pekov
    • 1
  • Nikita V. Chukanov
    • 3
  • Natalya N. Koshlyakova
    • 1
  • Bernd Ternes
    • 4
  • Willi Schüller
    • 5
  1. 1.Faculty of GeologyMoscow State UniversityMoscowRussia
  2. 2.Shubnikov Institute of Crystallography and Photonics, RASMoscowRussia
  3. 3.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia
  4. 4.MayenGermany
  5. 5.AdenauGermany

Personalised recommendations