Advertisement

Mineralogy and Petrology

, Volume 112, Supplement 2, pp 433–445 | Cite as

Geology of the Renard 65 kimberlite pipe, Québec, Canada

  • Matthew GaudetEmail author
  • Maya Kopylova
  • Colleen Muntener
  • Vlad Zhuk
  • Chetan Nathwani
Original Paper
  • 126 Downloads

Abstract

Renard 65, a diamondiferous pipe in the Neoproterozoic Renard kimberlite cluster (Québec, Canada), is a steeply-dipping and downward-tapering diatreme comprised of three pipe-filling units: kimb65a, kimb65b, and kimb65d. The pipe is surrounded by a marginal and variably-brecciated country rock aureole and is crosscut by numerous hypabyssal dykes: kimb65c. Extensive petrographic and mineralogical characterization of over 700 m of drill core from four separate drill holes, suggests that Renard 65 is a Group I kimberlite, mineralogically classified as phlogopite kimberlite and serpentine-phlogopite kimberlite. Kimb65a is a massive volcaniclastic kimberlite dominated by lithic clasts, magmaclasts, and discrete olivine macrocrysts, hosted within a fine-grained diopside and serpentine-rich matrix. Kimb65b is massive, macrocrystic, coherent kimberlite with a groundmass assemblage of phlogopite, spinel, perovskite, apatite, calcite, serpentine and rare monticellite. Kimb65c is a massive, macrocrystic, hypabyssal kimberlite with a groundmass assemblage of phlogopite, serpentine, calcite, perovskite, spinel, and apatite. Kimb65d is massive volcaniclastic kimberlite with localized textures that are intermediate between volcaniclastic and coherent, with tightly packed magmaclasts separated by a diopside- and serpentine-rich matrix. Lithic clasts of granite-gneiss in kimb65a are weakly reacted, with partial melting of feldspars and crystallization of richterite and actinolite. Lithic clasts in kimb65b and kimb65d are entirely recrystallized to calcite + serpentine/chlorite + pectolite and display inner coronas of diopside-aegirine and an outer corona of phlogopite. Compositions are reported for all minerals in the groundmass of coherent kimberlites, magmaclasts, interclast matrices, and reacted lithic clasts. The Renard 65 rocks are texturally classified as Kimberley-type pyroclastic kimberlites and display transitional textures. The kimberlite units are interpreted to have formed in three melt batches based on their distinct spinel chemistry: kimb65a, kimb65b and kimb65d. We note a strong correlation between the modal abundances of lithic clasts and the textures of the kimberlites, where increasing modal abundances of granite/gneiss are observed in kimberlites with increasingly fragmental textures.

Keywords

Kimberley-type pyroclastic kimberlite Phlogopite Spinel Kimberlite petrography Silicic clast contamination Kimberlite emplacement 

Notes

Acknowledgements

We thank Barbara Scott Smith for her valuable insight in the collection and interpretation of geological data. We are grateful to Ashton Soltys, Hugh O’Brien, Adam Abersteiner, and an anonymous reviewer for their valuable feedback which greatly improved the quality of this manuscript. We thank Bruce Kjarsgaard for his insightful feedback and editorial handling, and Stornoway Diamond Corporation for permission to publish the results. Funding for this this research was supported by Natural Sciences and Engineering Research Council Discovery and Engagement grants to MGK.

Supplementary material

710_2018_633_MOESM1_ESM.xlsx (13 kb)
ESM 1 (XLSX 12 kb)
710_2018_633_MOESM2_ESM.xlsx (13 kb)
ESM 2 (XLSX 12 kb)
710_2018_633_MOESM3_ESM.xlsx (21 kb)
ESM 3 (XLSX 20 kb)
710_2018_633_MOESM4_ESM.xlsx (22 kb)
ESM 4 (XLSX 21 kb)
710_2018_633_MOESM5_ESM.xlsx (29 kb)
ESM 5 (XLSX 29 kb)
710_2018_633_MOESM6_ESM.xlsx (12 kb)
ESM 6 (XLSX 12 kb)
710_2018_633_MOESM7_ESM.docx (11.5 mb)
ESM 7 (DOCX 11824 kb)

References

  1. Barnett W, Stubley M, Hetman C, Uken R, Hrkac C, McCandless T (2017) Kelvin and Faraday kimberlite emplacement geometries and implications for subterranean magmatic processes. 11th International Kimberlite Conference, extended abstract 11IKC-4589Google Scholar
  2. Birkett T, McCandless T, Hood C (2004) Petrology of the Renard igneous bodies: host rocks for diamond in the northern Otish Mountains region, Québec. Lithos 76:475–490CrossRefGoogle Scholar
  3. Brown R, Buse B, Sparks R, Field M (2008) On the welding of pyroclasts from very low-viscosity magmas: examples from kimberlite volcanoes. J Geol 116:354–374CrossRefGoogle Scholar
  4. Caro G, Kopylova M, Creaser R (2004) The hypabyssal 5034 kimberlite of the Gahcho Kué cluster, southeastern Slave craton, Northwest Territories, Canada: a granite-contaminated Group-I kimberlite. Can Mineral 42:183–207CrossRefGoogle Scholar
  5. Field M, Scott Smith B (1999) Contrasting geology and near-surface emplacement of kimberlite pipes in southern Africa and Canada. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) The J.B. Dawson Volume, Proceedings of the VIIth International Kimberlite Conference. Red Roof Design, Capetown, pp 214–237Google Scholar
  6. Field M, Stiefenhofer J, Robey J, Kurszlaukis S (2008) Kimberlite-hosted diamond deposits of southern Africa: a review. Ore Geol Rev 34:33–75CrossRefGoogle Scholar
  7. Fitzgerald C, Hetman C, Lepine C, Skelton D, McCandless T (2009) The internal geology and emplacement history of the Renard 2 kimberlite, Superior Province, Québec, Canada. Lithos 112(1):513–528CrossRefGoogle Scholar
  8. Fulop A, Kopylova M, Kurszlaukis S, Hilchie L, Ellemers P, Squibb C (2018) Petrography of the Snap Lake kimberlite dyke (Northwest Territories, Canada) and its interaction with country rock granitoids. J Petrol.  https://doi.org/10.1093/petrology/egy025
  9. Godin P, Hopkins R, Bedell P (2016) Updated Renard diamond project mine plan and mineral reserve estimate, Québec, Canada. NI 43-101 technical report, March 30, 2016, 278 ppGoogle Scholar
  10. Hawthorne F, Oberti R, Harlow G, Maresch W, Martin R, Schumacher J, Welch M (2012) Nomenclature of the amphibole supergroup. Can Mineral 97:2031–2048CrossRefGoogle Scholar
  11. Hayman P, Cas R, Johnson M (2008) The difficulties in distinguishing coherent from fragmental kimberlite: a case study of the Muskox pipe (northern Slave Province, Nunavut, Canada). J Volcanol Geotherm Res 174:139–151CrossRefGoogle Scholar
  12. Hetman C, Scott Smith B, Paul J, Winter F (2004) Geology of the Gahcho Kué kimberlite pipes, NWT, Canada: root to diatreme magmatic transition zones. Proceedings of the 8th International Kimberlite Conference. Lithos 76:51–74CrossRefGoogle Scholar
  13. Kjarsgaard B (2007) Kimberlite pipe models: significance for exploration. Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, pp 667–677Google Scholar
  14. Kopylova M, Mogg T, Scott Smith B (2010) Mineralogy of the Snap Lake kimberlite (NWT, Canada) and its phlogopite compositions as records of crystallization. Can Mineral 48:549–570CrossRefGoogle Scholar
  15. Mitchell R (1986) Kimberlites: mineralogy, geochemistry, and petrology. Plenum Press, New York, p 442Google Scholar
  16. Mitchell R (1995) Kimberlites, orangeites, and related rocks. Plenum Press, New York, p 410CrossRefGoogle Scholar
  17. Mitchell R (1997) Kimberlites, orangeites, lamproites, melilitites, and minettes: a petrographic atlas. Almaz press. Thunder Bay, Ontario, p 243Google Scholar
  18. Muntener C, Gaudet M (2018) Geology of the Renard 2 pipe to 1000 m depth, Renard Mine, Québec, Canada: insights into Kimberley-type pyroclastic kimberlite emplacement. Mineral Petrol.  https://doi.org/10.1007/s00710-018-0614-7
  19. Muntener C, Scott Smith B (2013) Economic geology of Renard 3, Québec, Canada: A diamondiferous, multi-phase pipe, infilled with hypabyssal and tuffisitic kimberlite. Proceedings of the 10th International Kimberlite Conference. J Geol Soc India 2:241–256Google Scholar
  20. Naidoo P, Stiefenhofer J, Field M, Dobbe R (2004) Recent advances in the geology of the Koffiefontein mine, Free State Province, South Africa. Lithos 76:161–182CrossRefGoogle Scholar
  21. Nelson L, Hetman C, Diering M (2017) The Geology of the Faraday 2 kimberlite, NWT, Canada. 11th International Kimberlite Conference, Extended abstract 11IKC-4678Google Scholar
  22. Nowicki T, Porritt L, Crawford B, Kjarsgaard B (2008) Geochemical trends in kimberlites of the Ekati property, Northwest Territories, Canada: insights on volcanic and resedimentation processes. J Volcanol Geotherm Res 174:117–127CrossRefGoogle Scholar
  23. Percival J (2007) Geology and metallogeny of the superior province, Canada. Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, special publication 5:903–928Google Scholar
  24. Porritt L, Cas R, Schaefer B, McKnight S (2012) Textural analysis of strongly altered kimberlite: examples from the ekati diamond mine, Northwest Territories, Canada. Can Mineral 50(3):625–641CrossRefGoogle Scholar
  25. Pouchou J, Pichoir F (1985) PAP ϕ(ρZ) procedure for improved quantitative microanalysis. Microb Anal 203:104–106Google Scholar
  26. Ranger I, Heaman L, Pearson D, Laroulandie C, Lépine I, Zhuk V (2017) Punctuated, long-lived emplacement history of the Renard 2 kimberlite, Canada, revealed by new high precision U-Pb groundmass perovskite dating. 11th International Kimberlite Conference, Extended abstract 11IKC-4493Google Scholar
  27. Roeder P, Schulze D (2008) Crystallization of groundmass spinel in kimberlite. J Petrol 49(8):1473–1495CrossRefGoogle Scholar
  28. Scott Smith B (2008) Canadian kimberlites: geological characteristics relevant to emplacement. J Volcanol Geotherm Res 174:9–19CrossRefGoogle Scholar
  29. Scott Smith B, Nowicki T, Russell J, Webb K, Mitchell R, Hetman C, Harder M, Skinner E, Robey J (2013) Kimberlite terminology and classification. Proceedings of the 10th International Kimberlite Conference, special issue of. J Geol Soc India 2:1–17Google Scholar
  30. Shee S (1984) The oxide minerals of the Wesselton Mine kimberlite, Kimberley, South Africa. In: Kornprobst J (ed) Kimberlites I: Kimberlites and related rocks. Elsevier, New York, pp 59–73CrossRefGoogle Scholar
  31. Skinner E, Marsh S (2004) Distinct kimberlite pipe classes with contrasting eruption processes. Lithos 76:183–200CrossRefGoogle Scholar
  32. Sparks R, Baker L, Brown R, Field M, Schumacher J, Stripp G, Walters A (2006) Dynamical constraints on kimberlite volcanism. J Volcanol Geotherm Res 155:18–48CrossRefGoogle Scholar
  33. Stiefenhofer J (2013) The use of chemical and metallurgical parameters to enhance the economic value of kimberlite resource models. Proceedings of the 5th Conference Diamonds – Source to UseGoogle Scholar
  34. Stripp G, Field M, Schumacher J, Sparks R, Cressey G (2006) Post-emplacement serpentinization and related hydrothermal metamorphism in a kimberlite from Venetia, South Africa. J Metamorph Geol 24:515–534CrossRefGoogle Scholar
  35. Tappe S, Foley S, Jenner G, Kjarsgaard B (2005) Integrating ultramafic lamprophyres into the IUGS classification of igneous rocks: rationale and implications. J Petrol 46(9):1893–1900CrossRefGoogle Scholar
  36. Tappe S, Brand N, Stracke A, Acken D, Liu C, Strauss H, Wu F, Luguet A, Mitchell R (2017) Plates or plumes in the origin of kimberlites: U/Pb perovskite and Sr-Nd-Hf-Os-C-O isotope constraints from the superior Craton (Canada). Chem Geol 445:57–83CrossRefGoogle Scholar
  37. van Straaten B, Kopylova M, Russell J, Webb K, Scott Smith B (2007) Discrimination of diamond resource and non-resource domains in the Victor north pyroclastic kimberlite. Canada J Volcanol Geotherm Res 174:128–138CrossRefGoogle Scholar
  38. Woolley A, Bergman S, Edgar A, Le Bas M, Mitchell R, Rock N, Scott Smith B (1995) Classification of lamprophyres, lamproites, kimberlites, and the kalsilite-, melilite-, and leucite-bearing rocks. (recommendations of the IUGS Subcomission on the systematics of igneous rocks). Can Mineral 32(2):175–186Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Earth, Ocean and Atmospheric SciencesUniversity of British ColumbiaVancouverCanada
  2. 2.Stornoway Diamond CorporationNorth VancouverCanada
  3. 3.Department of Earth Science and EngineeringImperial College London, Royal School of MinesLondonUK

Personalised recommendations