Advertisement

Mineralogy and Petrology

, Volume 112, Supplement 2, pp 639–651 | Cite as

Punctuated, long-lived emplacement history of the Renard 2 kimberlite, Canada, revealed by new high precision U-Pb groundmass perovskite dating

  • Ilona M. RangerEmail author
  • Larry M. Heaman
  • D. Graham Pearson
  • Colleen Muntener
  • Volodymyr Zhuk
Original Paper

Abstract

Kimberlites are rare volatile-rich ultramafic magmas thought to erupt in short periods of time (<1 Myr) but there is a growing body of evidence that the emplacement history of a kimberlite can be significantly more protracted. In this study we report a detailed geochronology investigation of a single kimberlite pipe from the Renard cluster in north-central Québec. Ten new high precision ID-TIMS (isotope dilution – thermal ionization mass spectrometry) U-Pb groundmass perovskite dates from the main pipe-infilling kimberlites and several small hypabyssal kimberlites from the Renard 2 pipe indicate kimberlite magmatism lasted at least ~20 Myr. Two samples of the main pipe-infilling kimberlites yield identical weighted mean 206Pb/238U perovskite dates with a composite date of 643.8 ± 1.0 Myr, interpreted to be the best estimate for main pipe emplacement. In contrast, six hypabyssal kimberlite samples yielded a range of weighted mean 206Pb/238U perovskite dates between ~652-632 Myr. Multiple dates determined from these early-, syn- and late-stage small hypabyssal kimberlites in the Renard 2 pipe demonstrate this rock type (commonly used to date kimberlites) help to constrain the duration of kimberlite intrusion history within a pipe but do not necessarily reliably record the emplacement age of the main diatreme in the Renard cluster. Our results provide the first robust geochronological data on a single kimberlite that confirms the field relationships initially observed by Wagner (1914) and Clement (1982); the presence of antecedent (diatreme precursor) intrusions, contemporaneous (syn-diatreme) intrusions, and consequent (post-diatreme) cross-cutting intrusions. The results of this detailed U-Pb geochronology study indicate a single kimberlite pipe can record millions of years of magmatism, much longer than previously thought from the classical viewpoint of a rapid and short-duration emplacement history.

Keywords

Renard ID-TIMS U-Pb Perovskite Hypabyssal kimberlite 

Notes

Acknowledgements

The authors would like to thank the committee of the 11th International Kimberlite Conference for selecting this abstract for oral presentation, and Robin Hopkins and Isabelle Lépine from Stornoway Diamond Corporation for providing access to Renard core and samples for research and help during sample collection. We thank the many individuals in the Department of Earth and Atmospheric Sciences at the University of Alberta for excellent laboratory and facility support; James LeBlanc, Barry Herchuk, Barry Shaulis, Chiranjeeb Sarkar, Martin von Dollen, Mark Labbe, Nathan Gerein, and Igor Jakab. Bruce Kjarsgaard and guest editor Philip Janney are thanked for helpful and constructive reviews. This study was funded by Natural Sciences and Engineering Research Council Discovery Grants to L.M.H. and D.G.P.

References

  1. Alibert C, Albarede F (1988) Relationships between mineralogical, chemical, and isotopic properties of some north American kimberlites. J Geophys Res 93:7643CrossRefGoogle Scholar
  2. Allsopp HL, Bristow JW, Smith CB, Brown R, Gleadow AJW, Kramers JD, Garvie OG (1989) A summary of radiometric dating methods applicable to kimberlites and related rocks. In: Ross J, Jaques AL, Ferguson J, green DH, O'Reilly SY, Danchin RV, Janse AJA (eds) Kimberlites and related rocks. Proceedings of the Fourth International Kimberlite conference, Special Publication - Geological Society of Australia, vol 1, no 14, pp 343–357Google Scholar
  3. Barnett RL, Laroulandie C (2017) Barium and titanium enrichment of zoned phlogopite xenocrysts and phenocrysts in the Adamantin kimberlites, Québec, Canada. 11th International Kimberlite Conference Extended Abstract No. 11IKC-004587, 3 pGoogle Scholar
  4. Birkett TC, McCandless TE, Hood CT (2004) Petrology of the Renard igneous bodies: host rocks for diamond in the northern Otish Mountains region, Quebec. Lithos 76:475–490CrossRefGoogle Scholar
  5. Burgess SD, Bowring SA, Heaman LM (2012) High-precision U-Pb geochronology of Ice River perovskite: a possible interlaboratory and intertechnique EARTHTIME standard. American Geophysical Union 2012 Fall Meeting, San Francisco, California (December 3–7), Abstract V23A-2787Google Scholar
  6. Canil D, Fedortchouk Y (1999) Garnet dissolution and the emplacement of kimberlites. Earth Planet Sci Lett 167:227–237CrossRefGoogle Scholar
  7. Card KD, Poulsen KH (1998) Geology and mineral deposits of the Superior Province of the Canadian Shield (Chapter 2). In: Lucas SB, St-Onge MR (co-ords) Geology of the Precambrian Superior and Grenville Provinces and Precambrian Fossils in North America. Geological Survey of Canada, Geology of Canada, no. 7 (Geological Society of America, The Geology of North America, v. C-1), pp 13–204Google Scholar
  8. Clement CR (1982) A comparative geological study of some major kimberlite pipes in the northern Cape and Orange Free State. Doctoral thesis (2 volumes), University of Cape TownGoogle Scholar
  9. Clement CR, Reid AM (1989) The origin of kimberlite pipes: an interpretation based on synthesis of geological features displayed by southern African occurrences. In: Ross J, Jaques AL, Ferguson J, green DH, O'Reilly SY, Danchin RV, Janse AJA (eds) Kimberlites and related rocks. Proceedings of the Fourth International Kimberlite conference, Special Publication - Geological Society of Australia, vol 1, no 14, pp 632–646Google Scholar
  10. Fahrig WF, Christie KW, Chown EH, Janes D, Machado N (1986) The tectonic significance of some basic dyke swarms in the Canadian Superior Province with special reference to the geochemistry and paleomagnetism of the Mistassini swarm, Quebec, Canada. Can J Earth Sci 23:238–253CrossRefGoogle Scholar
  11. Field M, Scott Smith BH (1998) Textural and genetic classification schemes for kimberlites: a new perspective. Seventh International Kimberlite Conference Extended Abstract, pp 214–216Google Scholar
  12. Field M, Scott Smith BH (1999) Contrasting geology and near-surface emplacement of kimberlite pipes in southern Africa and Canada. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of the VIIth international Kimberlite Conference, vol 1, pp 214–237Google Scholar
  13. Fitzgerald CE, Hetman CM, Lepine I, Skelton DS, McCandless TE (2009) The internal geology and emplacement history of the Renard 2 kimberlite, Superior Province, Quebec, Canada. Lithos 112:513–528CrossRefGoogle Scholar
  14. Gaudet M, Kopylova M, Zhuk V (2017) The principal role of silicic crustal xenolith assimilation in the formation of Kimberley-type pyroclastic kimberlites – a petrographic study of the Renard 65 kimberlite pipe, Canada. 11th International Kimberlite Conference Extended Abstract No. 11IKC-004565, 3 pGoogle Scholar
  15. Girard R (2001) Caracterisation de l'intrusion kimberlitique du lac Beaver, Monts Otish - Petrographie et mineralogie. Ressources naturelles Geologie Quebec, MB 2001–08, 23 ppGoogle Scholar
  16. Godin P, Hopkins R, Bedell P (2016) Updated Renard diamond project mine plan and mineral reserve estimate, Quebec, Canada, NI 43-101 technical report, March 30, 2016, 278 ppGoogle Scholar
  17. Griffin WL, Batumike JM, Greau Y, Pearson NJ, Shee SR, O’Reilly SY (2014) Emplacement ages and sources of kimberlites and related rocks in southern Africa: U–Pb ages and Sr–Nd isotopes of groundmass perovskite. Contrib Mineral Petrol 168:1032CrossRefGoogle Scholar
  18. Heaman LM (1989) The nature of the subcontinental mantle from Sr-Nd-Pb isotopic studies on kimberlitic perovskite. Earth Planet Sci Lett 92:323–334CrossRefGoogle Scholar
  19. Heaman LM (2004) 2.5-2.4 Ga global magmatism: remnants of supercontinents or products of superplumes. Geological Society of America 2004 Denver Annual Meeting (November 7–10), Abstracts with Programs 36(5):255Google Scholar
  20. Heaman LM (2009) The application of U–Pb geochronology to mafic, ultramafic and alkaline rocks: an evaluation of three mineral standards. Chem Geol 261:43–52CrossRefGoogle Scholar
  21. Heaman LM, Creaser RA, Cookenboo HO, Chacko T (2006) Multi-stage modification of the northern slave mantle lithosphere: evidence from zircon- and diamond-bearing Eclogite xenoliths entrained in Jericho Kimberlite, Canada. J Petrol 47:821–858CrossRefGoogle Scholar
  22. Heaman LM, Kjarsgaard BA (2000) Timing of eastern north American kimberlite magmatism: continental extension of the Great Meteor hotspot track? Earth Planet Sci Lett 178:253–268CrossRefGoogle Scholar
  23. Heaman LM, Kjarsgaard BA, Creaser RA (2004) The temporal evolution of north American kimberlites. Lithos 76:377–397CrossRefGoogle Scholar
  24. Heaman LM, Pell J, Grütter HS, Creaser RA (2015) U–Pb geochronology and Sr/Nd isotope compositions of groundmass perovskite from the newly discovered Jurassic Chidliak kimberlite field, Baffin Island, Canada. Earth Planet Sci Lett 415:183–199CrossRefGoogle Scholar
  25. Hetman CM, Scott Smith BH, Paul JL, Winter F (2004) Geology of the Gahcho Kué kimberlite pipes, NWT, Canada: root to diatreme magmatic transition zones. Lithos 76:51–74CrossRefGoogle Scholar
  26. Hoffman PF (1989) Precambrian geology and tectonic history of North America. In: Bally AW, Palmer AR (eds) The geology of North America - an overview, vol A. Geological Society of America. Boulder, Colorado, pp 447–512CrossRefGoogle Scholar
  27. Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurement of half-lives and specific activities of 235U and 238U. Phys Rev C 4:1889–1906CrossRefGoogle Scholar
  28. Kjarsgaard BA, Heaman LM, Sarkar C, Pearson DG (2017) The North America mid-Cretaceous kimberlite corridor: wet, edge-driven decompression melting of an OIB-type deep mantle source. Geochem Geophys Geosyst 18:2727–2747CrossRefGoogle Scholar
  29. Kong JM, Boucher DR, Scott Smith BH (1999) Exploration and geology of the Attawapiskat kimberlites, James Bay lowland, northern Ontario, Canada. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of the VIIth International Kimberlite Conference, vol 1, pp 452–467Google Scholar
  30. Lepine I, Farrow DJ (2018) 3D geological modelling of the Renard 2 pipe, Québec, Canada: from exploration to extraction. Miner Petrol, this volumeGoogle Scholar
  31. Lepine I, Zhuk V (2017) The Renard 2 coherent kimberlitic units, Québec Canada – spatial distribution and economic implications. 11th International Kimberlite Conference Extended Abstract No. 11IKC-004547, 3 pGoogle Scholar
  32. Letendre J, L'Heureux M, Nowicki T, Creaser R (2003) The Wemindji kimberlites: exploration and geology. 8th International Kimberlite Conference Long Abstract FLA-0311, 4 pGoogle Scholar
  33. Ludwig KR (2012) User’s manual for Isoplot 3.75. Berkeley Geochronology Center Special Publication no 5 (revised January 30, 2012), 75 ppGoogle Scholar
  34. Malarkey J, Pearson DG, Kjarsgaard BA, Davidson JP, Nowell GM, Ottley CJ, Stammer J (2010) From source to crust: tracing magmatic evolution in a kimberlite and a melilitite using microsample geochemistry. Earth Planet Sci Lett 299:80–90CrossRefGoogle Scholar
  35. McCandless TE (1999) Kimberlites: mantle expressions of deep-seated subduction. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of the VIIth International Kimberlite Conference, vol 2, pp 545–549Google Scholar
  36. McCandless TE, Schulze D, Bellis A, Taylor LA, Liu Y, van Rythoven AD (2008) Morphology and chemistry of diamonds from the Lynx kimberlite dyke complex, northern Otish Mountains, Quebec. 9th International Kimberlite Conference Extended Abstract No. 9IKC-A-00369, 3 pGoogle Scholar
  37. Mitchell RH (1986) Kimberlites: mineralogy, geochemistry, and petrology. Plenum Press, New York, p 442CrossRefGoogle Scholar
  38. Moore A, Blenkinsop T, Cotterill F (2008) Controls on post-Gondwana alkaline volcanism in southern Africa. Earth Planet Sci Lett 268:151–164CrossRefGoogle Scholar
  39. Moorhead J, Beaumier M, Girard R, Heaman L (2003) Distribution, structural controls and ages of kimberlite fields in the Superior province of Quebec. 8th International Kimberlite Conference Long Abstract FLA-0275, 5 pGoogle Scholar
  40. Muntener C, Gaudet M (2018) Geology of the Renard 2 pipe to 1,000 m depth, Renard mine, Québec, Canada: insights into Kimberley-type pyroclastic kimberlite emplacement. Miner Petrol, this volumeGoogle Scholar
  41. Muntener C, Scott Smith BH (2013) Economic geology of Renard 3, Québec, Canada: a diamondiferous, multi-phase pipe infilled with hypabyssal and Tuffisitic kimberlite. In: Pearson DG et al (eds) Proceedings of 10th International Kimberlite Conference, J Geol Soc India special issue 2:241–256Google Scholar
  42. Nixon PH (1973) The geology of Mothae, Solane, Thaba Putsoa and Blow 13. In: Nixon PH (ed) Lesotho kimberlites, Lesotho National Development Corporation, pp 39–47Google Scholar
  43. Patterson M, Francis D, McCandless T (2009) Kimberlites: magmas or mixtures? Lithos 112:191–200CrossRefGoogle Scholar
  44. Percival JA, Skulski T, Sanborn-Barrie M, Stott GM, Leclair AD, Corkery MT, Boily M (2012) Geology and tectonic evolution of the Superior Province, Canada (chapter 6). In: Percival JA, Cook FA, Clowes RM (eds) Tectonic styles in Canada: the LITHOPROBE perspective. Geological Association of Canada, Special Paper 49, pp 321–378Google Scholar
  45. Sarkar C, Heaman LM, Pearson DG (2015a) Duration and periodicity of kimberlite volcanic activity in the Lac de Gras kimberlite field, Canada and some recommendations for kimberlite geochronology. Lithos 218-219:155–166CrossRefGoogle Scholar
  46. Sarkar C, Pearson DG, Heaman LM, Woodland SJ (2015b) Precise Pb isotope ratio determination of picogram-size samples: a comparison between multiple Faraday collectors equipped with 1012 Ω amplifiers and multiple ion counters. Chem Geol 395:27–40CrossRefGoogle Scholar
  47. Schmitz MD, Schoene B (2007) Derivation of isotope ratios, errors, and error correlations for U-Pb geochronology using 205Pb-235U-(233U)-spiked isotope dilution thermal ionization mass spectrometric data. Geochem Geophy Geosyst 8(8):Q08006CrossRefGoogle Scholar
  48. Skinner EMW, Marsh JS (2004) Distinct kimberlite pipe classes with contrasting eruption processes. Lithos 76:183–200CrossRefGoogle Scholar
  49. Scott Smith BH, Nowicki TE, Russel JK, Webb KJ, Mitchell RH, Hetman CM, Harder M, Skinner EMW, Robey JvA (2013) Kimberlite terminology and classification. In: Pearson DG et al (eds) Proceedings of 10th International Kimberlite Conference, J Geol Soc India special issue 2:1–17Google Scholar
  50. Sparks RSJ, Baker L, Brown RJ, Field M, Schumacher J, Stripp G, Walters A (2006) Dynamical constraints on kimberlite volcanism. J Volcanol Geotherm Res 155:18–48CrossRefGoogle Scholar
  51. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  52. Tappe S, Brand NB, Stracke A, van Acken D, Liu C-Z, , Strauss H, Wu F-Y, Luguet A, Mitchell RH (2017) Plates or plumes in the origin of kimberlites: U/Pb perovskite and Sr-Nd-Hf-Os-C-O isotope constraints from the superior craton (Canada). Chem Geol 455:57–83CrossRefGoogle Scholar
  53. Wagner PA (1914) The diamond fields of southern Africa. The Transvaal Leader, Johannesburg, p 355Google Scholar
  54. Watson KD (1967) Kimberlites of eastern North America. In: Wyllie PJ (ed) Ultramafic and related rocks. John Wiley & Sons, Inc, pp 312–323Google Scholar
  55. Wilson L, Head JW III (2007) An integrated model of kimberlite ascent and eruption. Nature 447:53–57CrossRefGoogle Scholar
  56. Zurevinski SE, Heaman LM, Creaser RA, Strand P (2008) The Churchill kimberlite field, Nunavut, Canada: petrography, mineral chemistry, and geochronology. Can J Earth Sci 45:1039–1059CrossRefGoogle Scholar
  57. Zurevinski SE, Mitchell RH (2011) Highly evolved hypabyssal kimberlite sills from Wemindji, Quebec, Canada: insights into the process of flow differentiation in kimberlite magmas. Contrib Mineral Petrol 161:765–776CrossRefGoogle Scholar
  58. Zhuk V, Lepine I, Laroulandie C (2017) Continuity of Kimberley-type pyroclastic kimberlite phases within Renard 2 over 1,000 m depth – insights to the geological and emplacement model, Superior craton, Canada. 11th International Kimberlite Conference Extended Abstract No. 11IKC-004540, 3 pGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Stornoway Diamond CorporationNorth VancouverCanada

Personalised recommendations