Advertisement

Clinopyroxene megacrysts from Marion Island, Antarctic Ocean: evidence for a late stage shallow origin

  • R. James RobertsEmail author
  • Keabetswe D. Lehong
  • Andries E. J. Botha
  • Gelu Costin
  • Frikkie C. De Beer
  • Willem J. Hoffman
  • Callum J. Hetherington
Original Paper

Abstract

Clinopyroxene megacrysts (up to 5 cm) from a scoria cone on Marion Island, Antarctic Ocean are zoned, with compositionally distinct low (Al + Ti) and high (Al + Ti) patches arranged haphazardly throughout crystals. Inclusions of olivine, pyrrhotite, oxides, sulphides, and rounded inclusions with euhedral micro-crystals interpreted as former melt inclusions are observed. Olivine inclusions have variable compositions, ranging from primary Ti-poor crystals to Ti-rich crystals hosting secondary haematite crystals formed by hydrogenation. The crystals contain voids that are concentrated in the middle of each crystal indicating that the initial crystal growth was skeletal. Subsequent crystallisation filled in the skeletal framework creating the patchy zoning in the crystals. The Marion Island megacrysts are not homogenous, but the combination of crustal clinopyroxene compositions, primary and hydrogenated olivine, and the mode of eruption in scoria eruptions indicates that these crystals most likely formed in a shallow magma chamber. Primary olivines crystallised from a mafic magma and secondary altered olivines were incorporated into a rapidly growing megacryst in a super-saturated, fluid-rich environment, prior to being ejected onto surface in a scoria eruption.

Keywords

Marion Island Clinopyroxene megacrysts Late stage eruption Ankaramites 

Notes

Acknowledgements

This paper represents the culmination of several years’ work, and has relied on the generosity of numerous people for analytical time and interpretation, especially the late Peter Gräser who performed the original EPMA analysis. David Evans, an anonymous reviewer, and associate editor Xisheng Xu are thanked for their comments and revisions on drafts of the paper. Thanks is also given to David Dixon for redrafting the map.

Supplementary material

710_2018_651_MOESM1_ESM.xlsx (69 kb)
ESM 1 (XLSX 69 kb)
710_2018_651_MOESM2_ESM.xlsx (21 kb)
ESM 2 (XLSX 21 kb)
710_2018_651_MOESM3_ESM.xlsx (10 kb)
ESM 3 (XLSX 10 kb)
710_2018_651_MOESM4_ESM.xlsx (28 kb)
ESM 4 (XLSX 28 kb)
710_2018_651_MOESM5_ESM.xlsx (77 kb)
ESM 5 (XLSX 76 kb)

References

  1. Boelhouwers JC, Meiklejohn KI, Holness SD, Hedding DW (2008) Geology, geomorphology and climate change. In: Chown SL, Froneman PW (eds) The Prince Edward islands. Land-sea interactions in a changing ecosystem. African Sunmedia, Johannesburg, pp 65–96Google Scholar
  2. Champness PE (1970) Nucleation and growth of iron oxides in olivines, (Mg, Fe)2SiO4. Mineral Mag 37(291):790–800CrossRefGoogle Scholar
  3. Chevallier L (1986) Tectonics of Marion and Prince Edward volcanoes (Indian Ocean): result of regional control and edifice dynamics. Tectonophysics 124(1):155–175CrossRefGoogle Scholar
  4. De Hoog JC, Hattori K, Jung H (2014) Titanium and water-rich metamorphic olivine in high-pressure serpentinites from the Voltri Massif (Ligurian Alps, Italy): evidence for deep subduction of high-field strength and fluid-mobile elements. Contrib Mineral Petrol 167(3):990CrossRefGoogle Scholar
  5. Dyar MD, Delaney JS, Sutton SR, Schaefer MW (1998) Fe3+ distribution in oxidized olivine: a synchrotron micro-XANES study. Am Mineral 83(12):1361–1365CrossRefGoogle Scholar
  6. Hall K, Meiklejohn I, Bumby A (2011) Marion Island volcanism and glaciation. Antarct Sci 23(2):155–163CrossRefGoogle Scholar
  7. Hammer J, Jacob S, Welsch B, Hellebrand E, Sinton J (2016) Clinopyroxene in postshield Haleakala ankaramite: 1. Efficacy of thermobarometry. Contrib Mineral Petrol 171(1):1CrossRefGoogle Scholar
  8. Hoffman JW, De Beer FC (2012) Characteristics of the Micro-Focus X-ray Tomography Facility (MIXRAD) at Necsa in South Africa. 18th World Conference on Non-Destructive Testing, Durban. http://www.ndt.net/article/wcndt2012/papers/37_wcndtfinal00037.pdf
  9. Hwang SL, Yui TF, Chu HT, Shen P, Iizuka Y, Yang HY, Yang J, Xu Z (2008) Hematite and magnetite precipitates in olivine from the Sulu peridotite: a result of dehydrogenation-oxidation reaction of mantle olivine? Am Mineral 93(7):1051–1060CrossRefGoogle Scholar
  10. Ingrin J, Skogby H (2000) Hydrogen in nominally anhydrous upper-mantle minerals: concentration levels and implications. Eur J Mineral 12(3):543–570CrossRefGoogle Scholar
  11. Jan C, De Hoog M, Hattori K, Jung H (2014) Titanium-and water-rich metamorphic olivine in high-pressure serpentinites from the Voltri Massif (Ligurian Alps, Italy): evidence for deep subduction of high-field strength and fluid-mobile elements. Contrib Mineral Petrol 167(3):1Google Scholar
  12. Jochum KP, Willbold M, Raczek I, Stoll B, Herwig K (2005) Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand Geoanal Res 29(3):285–302CrossRefGoogle Scholar
  13. Khisina NR, Wirth R (2002) Hydrous olivine (Mg1−y Fe2+ y)2x vx SiO4H2x– a new DHMS phase of variable composition observed as nanometer-sized precipitations in mantle olivine. Phys Chem Miner 29(2):98–111CrossRefGoogle Scholar
  14. Kohlstedt DL, Vander Sande JB (1975) An electron microscopy study of naturally occurring oxidation produced precipitates in iron-bearing olivines. Contrib Mineral Petrol 53(1):13–24CrossRefGoogle Scholar
  15. Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P (eds) (2005) Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, CambridgeGoogle Scholar
  16. Le Roex AP, Chevallier L, Verwoerd WJ, Barends R (2012) Petrology and geochemistry of Marion and Prince Edward islands, Southern Ocean: magma chamber processes and source region characteristics. J Volcanol Geotherm Res 223:11–28CrossRefGoogle Scholar
  17. Loucks RR (1990) Discrimination of ophiolitic from nonophiolitic ultramafic-mafic allochthons in orogenic belts by the Al/Ti ratio in clinopyroxene. Geology 18(4):346–349CrossRefGoogle Scholar
  18. Maaløe S, Pedersen RB, James D (1988) Delayed fractionation of basaltic lavas. Contrib Mineral Petrol 98(4):401–407CrossRefGoogle Scholar
  19. McDougall I, Verwoerd W, Chevallier L (2001) K–Ar geochronology of Marion Island, Southern Ocean. Geol Mag 138(01):1–17CrossRefGoogle Scholar
  20. Mollo S, Hammer JE (2017) Dynamic crystallization in magmas. In: Heinrich W, Abart R (eds) Mineral reaction kinetics: microstructures, textures, chemical and isotopic signatures. EMU Notes Mineralog, vol 16. European Mineralogical Union and Mineralogical Society of Great Britain and Ireland, London, pp 373–418Google Scholar
  21. Mollo S, Putirka K, Misiti V, Soligo M, Scarlato P (2013) A new test for equilibrium based on clinopyroxene–melt pairs: clues on the solidification temperatures of Etnean alkaline melts at post-eruptive conditions. Chem Geol 352:92–100CrossRefGoogle Scholar
  22. Morimoto N (1988) Nomenclature of pyroxenes. Miner Petrol 39(1):55–76CrossRefGoogle Scholar
  23. Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Mineral Petrol 139(5):541–554CrossRefGoogle Scholar
  24. Putirka KD (2008) Thermometers and barometers for volcanic systems. In: Putirka KD, Tepley FJ III (eds) Minerals, inclusions and volcanic processes. Rev Mineral Geochem, vol 69. Mineral Soc Am, Chantilly, pp 61–120Google Scholar
  25. Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66(05):689–708Google Scholar
  26. Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Miner Soc Am Monograph, Washington DC 799 ppGoogle Scholar
  27. Stewart ML, Pearce TH (2004) Sieve-textured plagioclase in dacitic magma: interference imaging results. Am Mineral 89(2–3):348–351CrossRefGoogle Scholar
  28. Streck MJ (2008) Mineral textures and zoning as evidence for open system processes. In: Putirka KD, Tepley FJ III (eds) Minerals, inclusions and volcanic processes. Rev Mineral Geochem, vol 69. Mineral Soc Am, Chantilly, pp 595–622Google Scholar
  29. Sumner PD, Meiklejohn KI, Boelhouwers JC, Hedding DW (2004) Climate change melts Marion Island's snow and ice: research letter. S Afr J Sci 100(7–8):395–398Google Scholar
  30. Sun SS, McDonough WS (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Spec Publ 42(1):313–345CrossRefGoogle Scholar
  31. Tomiya A, Takahashi E (2005) Evolution of the magma chamber beneath Usu volcano since 1663: a natural laboratory for observing changing phenocryst compositions and textures. J Petrol 46(12):2395–2426CrossRefGoogle Scholar
  32. Vance JA (1965) Zoning in igneous plagioclase: patchy zoning. J Geol 73(4):636–651CrossRefGoogle Scholar
  33. Verwoerd WJ (1971) Geology. In: van Zinderen Bakker EM, Winterbottom JM, Dyer RA (eds) Marion and Prince Edward islands: report on the South African biological and geological expedition 1965–1966. AA Balkema, Cape Town, pp 40–62Google Scholar
  34. Verwoerd WJ, Chevallier L, Thomson JW (1990) Oceanic islands on the Antarctic Plate. In: LeMasurier WE, Thompson JW, Baker PE, Kyle PR, Rowley PD, Smellie JL, Verwoerd WJ (eds) Volcanoes of the Antarctic Plate and Southern Oceans, Volume 48. American Geophysical Union, Washington D.C., pp 396–463Google Scholar
  35. Welsch B, Hammer J, Baronnet A, Jacob S, Hellebrand E, Sinton J (2016) Clinopyroxene in postshield Haleakala ankaramite: 2. Texture, compositional zoning and supersaturation in the magma. Contrib Mineral Petrol 171(1):1CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of GeologyUniversity of PretoriaPretoriaSouth Africa
  2. 2.Department of GeologyRhodes UniversityGrahamstownSouth Africa
  3. 3.Department of Earth, Environmental and Planetary SciencesRice UniversityHoustonUSA
  4. 4.Radiation Science DepartmentSouth African Nuclear Energy Corporation (Necsa)PelindabaSouth Africa
  5. 5.Department of GeosciencesTexas Tech UniversityLubbockUSA

Personalised recommendations