Advertisement

Protoplasma

pp 1–16 | Cite as

Chemical composition of cell walls in velamentous roots of epiphytic Orchidaceae

  • Thais Arruda Costa Joca
  • Denis Coelho de OliveiraEmail author
  • Gerhard Zotz
  • João Custódio Fernandes Cardoso
  • Ana Sílvia Franco Pinheiro Moreira
Original Article
  • 9 Downloads

Abstract

The chemical composition of the cell walls strongly affects water permeability and storage in root tissues. Since epiphytic orchids live in a habitat with a highly fluctuating water supply, the root cell walls are functionally important. In the present study, we used histochemistry and immunocytochemistry techniques in order to determine the composition of the cell walls of root tissues of 18 epiphytic species belonging to seven subtribes across the Orchidaceae. The impregnation of lignin in the velamen cells reinforces its function as mechanical support and can facilitate apoplastic flow. Pectins, as well cellulose and lignins, are also essential for the stability and mechanical support of velamen cells. The exodermis and endodermis possess a suberinized lamella and often lignified walls that function as selective barriers to apoplastic flow. Various cortical parenchyma secondary wall thickenings, including phi, reticulated, and uniform, prevent the cortex from collapsing during periods of desiccation. The presence of highly methyl-esterified pectins in the cortical parenchyma facilitates the formation of gels, causing wall loosening and increased porosity, which contributes to water storage and solute transport between cells. Finally, cells with lipid or lignin impregnation in the cortical parenchyma could increase the water flow towards the stele.

Keywords

Aerial roots Epiphytic orchids Lignin Pectins Velamen Water absorption 

Notes

Funding information

Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) provided a scholarship granted to T.A.C. Joca and financial support, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for a scholarship granted to D.C. Oliveira, and the Deutsche Forschungsgemeinschaft (DFG; ZO 94/7-1 to GZ).

References

  1. Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2011) Plant cell walls: from chemistry to biology. Garland Science, New YorkGoogle Scholar
  2. Barberon M (2017) The endodermis as a checkpoint for nutrients. New Phytol 213:1604–1610.  https://doi.org/10.1111/nph.14140
  3. Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, Dai B, Scheipl F, Grothendieck G, Green P (2018) lme4: linear mixed–effects models using Eigen and S4. R package version 1:1–17 https://CRAN.R-project.org/package=lme4. Accessed 05 May 2018
  4. Benzing DH, Friedman WE, Peterson G, Renfrow A (1983) Shootlesness, velamentous roots, and the preeminence of Orchidaceae in the epiphytic biotope. Am J Bot 70:121–133.  https://doi.org/10.1002/j.1537-2197.1983.tb12440.x
  5. Blamey FPC, Edmeades DC, Wheeler DM (1990) Role of cation exchange capacity in differential aluminum tolerance of Lotus species. J Plant Nutr 13:729–744.  https://doi.org/10.1080/01904169009364112 CrossRefGoogle Scholar
  6. Brundrett M, Enstone D, Peterson C (1988) A berberine-aniline blue fluorescent staining procedure for suberin, lignin, and callose in plant tissue. Protoplasma 146:133–142.  https://doi.org/10.1007/BF01405922 CrossRefGoogle Scholar
  7. Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants-consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30.  https://doi.org/10.1111/j.1365-313X.1993.tb00007.x CrossRefGoogle Scholar
  8. Chamberlain CJ (1932) Methods in plant histology. University of Chicago press, ChicagoGoogle Scholar
  9. Chang YC, Yamamoto Y, Matsumoto H (1999) Accumulation of aluminum in the cell wall pectin in cultured tobacco (Nicotiana tabacum L.) cells treated with a combination of aluminum and iron. Plant Cell Environ 22:1009–1017.  https://doi.org/10.1046/j.1365-3040.1999.00467.x CrossRefGoogle Scholar
  10. Chomicki G, Bidel LPR, Jay-Allemand C (2014) Exodermis structure controls fungal invasion in the leafless epiphytic orchid Dendrophylax lindenii (Lindl.) Benth. ex Rolfe. Flora 209:88–94.  https://doi.org/10.1016/j.flora.2014.01.001 CrossRefGoogle Scholar
  11. Davis MAF, Gildley MJ, Morris ER, Powell DA, Rees DA (1980) Intermolecular association in pectin solutions. Int J Biol Macromol 2:330–332.  https://doi.org/10.1016/0141-8130(80)90059-8 CrossRefGoogle Scholar
  12. Degenhardt B, Gimmler H (2000) Cell wall adaptations to multiple environmental stresses in maize roots. J Exp Bot 51:595–603.  https://doi.org/10.1093/jexbot/51.344.595 CrossRefGoogle Scholar
  13. Doblas VG, Geldner N, Barberon M (2017) The endodermis, a tightly controlled barrier for nutrients. Curr Opin Plant Biol 39:136–143.  https://doi.org/10.1016/j.pbi.2017.06.010
  14. Draye X, Kim Y, Lobet G, Javaux M (2010) Model-assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils. J Exp Bot 61:2145–2155.  https://doi.org/10.1093/jxb/erq077
  15. Dycus AM, Knudson L (1957) The role of the velamen of the aerial roots of orchids. Bot Gaz 119:78–87.  https://doi.org/10.1086/335966 CrossRefGoogle Scholar
  16. Engard CJ (1944) Morphological identity of the velamen and exodermis in orchids. Bot Gaz 105:457–462.  https://doi.org/10.1086/335255 CrossRefGoogle Scholar
  17. Enstone DE, Peterson CA, Ma F (2003) Root endodermis and exodermis: structure, function, and responses to the environment. J Plant Growth Regul 21:335–351.  https://doi.org/10.1007/s00344-003-0002-2 CrossRefGoogle Scholar
  18. Fahn A (1990) Plant anatomy. Pergamon Press, OxfordGoogle Scholar
  19. Ferguson IB, Clarkson DT (1976) Ion uptake in relation to the development of a root hypodermis. New Phytol 77:11–14.  https://doi.org/10.1111/j.1469-8137.1976.tb01495.x CrossRefGoogle Scholar
  20. Haas DL, Carothers ZB, Robbins RR (1976) Observations on the phi thickenings and casparian strips in Pelargonium roots. Am J Bot 63:863–867.  https://doi.org/10.1002/j.1537-2197.1976.tb11878.x CrossRefGoogle Scholar
  21. Hocq L, Pelloux J, Lefebvre V (2017) Connecting homogalacturonan-type pectin remodeling to acid growth. Trends Plant Sci 22:20–29.  https://doi.org/10.1016/j.tplants.2016.10.009 CrossRefGoogle Scholar
  22. Hongo S, Sato K, Yokoyama R, Nishitani K (2012) Demethylesterification of the primary wall by PECTIN METHYLESTERASE35 provides mechanical support to the Arabidopsis stem. Plant Cell 24:2624–2634.  https://doi.org/10.1105/tpc.112.099325 CrossRefGoogle Scholar
  23. Hose E, Clarkson DT, Steudle E, Schreiber L, Hartung W (2001) The exodermis: a variable apoplastic barrier. J Exp Bot 52:2245–2264.  https://doi.org/10.1093/jexbot/52.365.2245 CrossRefGoogle Scholar
  24. Hothorn T, Bretz F, Westfall P, Heiberger RM, Schuetzenmeister A, Scheibe S (2017) Multcomp: simultaneous inference in general parametric models. R package version 1:4–8 https://CRAN.R-project.org/package=multcomp. Accessed 05 May 2018
  25. Jarvis MC (1984) Structure and properties of pectin gels in plant cell walls. Plant Cell Environ 7:153–164.  https://doi.org/10.1111/1365-3040.ep11614586 Google Scholar
  26. Jarvis MC (1992) Control of thickness of collenchyma cell walls by pectins. Planta 187:218–220.  https://doi.org/10.1007/BF00201941 CrossRefGoogle Scholar
  27. Jarvis MC, McCann MC (2000) Macromolecular biophysics of the plant cell wall: concepts and methodology. Plant Physiol Bioch 38:1–13.  https://doi.org/10.1016/S0981-9428(00)00172-8 CrossRefGoogle Scholar
  28. Jensen WA (1962) Botanical histochemistry: principles and practice. Freeman and Company, San FranciscoGoogle Scholar
  29. Joca TAC, Oliveira DC, Zotz G, Winkler U, Moreira ASFP (2017) The velamen of epiphytic orchids: variation in structure and correlations with nutrient absorption. Flora 230:66–74.  https://doi.org/10.1016/j.flora.2017.03.009 CrossRefGoogle Scholar
  30. Johansen DA (1940) Plant microtechnique. McGraw Hill Book Co, New YorkGoogle Scholar
  31. Kamula SA, Peterson CA, Mayfield CI (1994) The plasmalemma surface area exposed to the soil solution is markedly reduced by maturation of the exodermis and death of the epidermis in onion roots. Plant Cell Environ 17:1183–1193.  https://doi.org/10.1111/j.1365-3040.1994.tb02016.x CrossRefGoogle Scholar
  32. Knox JP (1997) The use of antibodies to study the architecture and developmental regulation of plant cell walls. Int Rev Cytol 171:79–120.  https://doi.org/10.1016/S0074-7696(08)62586-3 CrossRefGoogle Scholar
  33. Kolattukudy PE, Kronman K, Poulose AJ (1975) Determination of structure and composition of suberin from the roots of carrot, parsnip, rutabaga, turnip, red beet, and sweet potato by combined gas-liquid chromatography and mass spectrometry. Plant Physiol 55:567–573.  https://doi.org/10.1104/pp.55.3.567 CrossRefGoogle Scholar
  34. Liu Q, Talbot M, Llevellyn DJ (2013) Pectin methylesterase and pectin remodeling differ in fiber walls of two Gossypium species with very different fibre properties. PLoS One 8:165–131.  https://doi.org/10.1371/journal.pone.0065131 Google Scholar
  35. Ma F, Peterson CA (2000) Plasmodesmata in onion (Allium cepa L.) roots: a study by improved fixation and embedding techniques. Protoplasma 211:103–105.  https://doi.org/10.1007/BF01279903 CrossRefGoogle Scholar
  36. McCree KJ, Fernández CJ (1989) Simulation model for studying physiological water stress responses of whole plants. Crop Sci 29:353–360.  https://doi.org/10.2135/cropsci1989.0011183X002900020025x CrossRefGoogle Scholar
  37. Melo HC (2011) Phi thickening of cell wall. Hoehnea 38:1–7.  https://doi.org/10.1590/S2236-89062011000100001 CrossRefGoogle Scholar
  38. Moreira ASFP, Isaias RMS (2008) Comparative anatomy of the absorption roots of terrestrial and epiphytic orchids. Braz Arch Biol Technol 51:83–93.  https://doi.org/10.1590/S1516-89132008000100011 CrossRefGoogle Scholar
  39. Morris GA, Foster TJ, Harding SE (2000) The effect of the degree of esterification on the hydrodynamic properties of citrus pectin. Food Hydrocoll 14:227–235.  https://doi.org/10.1016/S0268-005X(00)00007-2 CrossRefGoogle Scholar
  40. Noel ARA (1974) Aspects of cell wall structure and the development of the velamen in Ansellia gigantea Reichb. f. Ann Bot 38:495–504.  https://doi.org/10.1093/oxfordjournals.aob.a084835 CrossRefGoogle Scholar
  41. O'Brien TP, McCully ME (1981) The study of plant structure principles and selected methods. Termarcarphi Pry, MelbourneGoogle Scholar
  42. Oksanen J, Blanchet FG, Friendly M et al (2018) Vegan: community ecology package. R Package Version 2:5–1 https://CRAN.R-project.org/package=vegan. Accessed 26 April 2018
  43. Oliveira VC, Sajo MG (1999) Root anatomy of nine Orchidaceae species. Braz Arch Biol Technol 42: on line.  https://doi.org/10.1590/S1516-89131999000400005
  44. Peterson CA, Perumalla CJ (1990) A survey of angiosperm species to detect hypodermal Casparian bands. II. Roots with a multiseriate hypodermis or epidermis. Bot J Linn Soc 103:113–125.  https://doi.org/10.1111/j.1095-8339.1990.tb00177.x
  45. Peterson CA, Enstone DE (1996) Functions of passage cells in the endodermis and exodermis of roots. Physiol. Plant 97:592–598.  https://doi.org/10.1111/j.1399-3054.1996.tb00520.x CrossRefGoogle Scholar
  46. Peterson CA, Emanuel ME, Humphreys GB (1981) Pathway of movement of apoplastic fluorescent dye tracers through the endodermis at the site of secondary root formation in corn (Zea mays) and broad bean (Vicia faba). Can J Bot 59:618–625.  https://doi.org/10.1139/b81-087 CrossRefGoogle Scholar
  47. Porembski S, Barthlott W (1988) Velamen radicum micromorphology and classification of Orchidaceae. Nord J Bot 8:117–137.  https://doi.org/10.1111/j.1756-1051.1988.tb00491.x CrossRefGoogle Scholar
  48. Pridgeon AM (1987) The velamen and exodermis of orchid roots. In: Arditti J (ed) Orchid biology: reviews and perspectives, 4rd edn. Cornell University Press, New York, pp 140–192Google Scholar
  49. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. R version 3.5.0. https://www.R-project.org/. Accessed 05 May 2018
  50. Ridley B, O’Neil MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967.  https://doi.org/10.1016/S0031-9422(01)00113-3 CrossRefGoogle Scholar
  51. Roland JC, Vian B (1991) General preparation and staining of thin sections. In: Hall JL, Hawes E (eds) Electron microscopy of plant cells. Academic Press, LondonGoogle Scholar
  52. Roth-Nebelsick A (2009) Pull, push and evaporate. The role of surfaces in plant water transport. In: Gorb S (ed) Functional surfaces in biology. Little structures with big effects. Springer, Berlin, pp 141–162CrossRefGoogle Scholar
  53. Schreiber L, Hartmann K, Skrabs M, Zeier J (1999) Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls. J Exp Bot 50:1267–1280.  https://doi.org/10.1093/jxb/50.337.1267 Google Scholar
  54. Stern WL, Judd WS (2001) Comparative anatomy and systematics of Catasetinae (Orchidaceae). Bot J Linn Soc 136:153–178.  https://doi.org/10.1006/bojl.2000.0439 CrossRefGoogle Scholar
  55. Steudle E, Ranathunge K (2007) Apoplastic water transport in roots. In: Sattelmacher B, Horst WJ (eds) The apoplast of higher plants: compartment of storage, transport and reactions. Springer, Berlin, pp 119–130CrossRefGoogle Scholar
  56. Steudle E,  Peterson CA (1998) How does water get through roots?. J Exp Bot 49 (322):775–788.  https://doi.org/10.1093/jxb/49.322.775
  57. Von Guttenberg H (1968) Der primäre Bau der Angiospermenwurzeln. In: Linsbauer K (ed) Handbuch der Pflanzenanatomie. Gebrüder Borntraeger, Berlin, pp 141–159Google Scholar
  58. Wang XL, MccCully ME, Canny MJ (1995) Branch roots in Zea. V. Structural features that may influence water and nutrient transport. Bot Acta 108:209–219.  https://doi.org/10.1111/j.1438-8677.1995.tb00852.x CrossRefGoogle Scholar
  59. Wang T, Park YB, Cosgrove DJ, Hong M (2015) Cellulose-pectin spatial contacts are inherent to never-dried Arabidopsis primary cell walls: evidence from solid-state nuclear magnetic resonance. Plant Physiol 168:871–884.  https://doi.org/10.1104/pp.15.00665 CrossRefGoogle Scholar
  60. Warnes GR, Bolker B, Bonebakker L et al (2016) gplots: various R programming tools for plotting data. R package version 3.0.1. https://CRAN.R-project.org/package=gplots. Accessed 26 April 2018
  61. Wilcox H (1962) Growth studies of the root of incense cedar, Libocedrus decurrens. I. The origin and development of primary tissues. Am J Bot 49:221–236.  https://doi.org/10.1002/j.1537-2197.1962.tb14932.x CrossRefGoogle Scholar
  62. Willats WGT, Limberg G, Buchholt HC, Van Alebeek GJ, Benen J, Christensen TMIE, Visser J, Voragen A, Mikkelsen JD, Knox JP (2000) Analysis of pectic epitopes recognized by hybridoma and phage display monoclonal antibodies using defined oligosaccharides, polysaccharides, and enzymatic degradation. Carbohydr Res 327:309–320.  https://doi.org/10.1016/S0008-6215(00)00039-2 CrossRefGoogle Scholar
  63. Willats WGT, McCartney L, Mackie W, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27.  https://doi.org/10.1023/A:1010662911148 CrossRefGoogle Scholar
  64. Wolf S, Greiner S (2012) Growth control by cell wall pectins. Protoplasma 249:169–175.  https://doi.org/10.1007/s00709-011-0371-5 CrossRefGoogle Scholar
  65. Zotz G (2013) The systematic distribution of vascular epiphytes - a critical update. Bot J Linn Soc 171:453–481.  https://doi.org/10.1111/boj.12010 CrossRefGoogle Scholar
  66. Zotz G (2016) Plants on plants. The biology of vascular epiphytes. Springer International Publishing, BerlinGoogle Scholar
  67. Zotz G, Hietz P (2001) The physiological ecology of vascular epiphytes: current knowledge, open questions. J Exp Bot 52:2067–2078.  https://doi.org/10.1093/jexbot/52.364.2067 CrossRefGoogle Scholar
  68. Zotz G, Winkler U (2013) Aerial roots of epiphytic orchids: the velamen radicum and its role in water and nutrient uptake. Oecologia 171:733–741.  https://doi.org/10.1007/s00442-012-2575-6 CrossRefGoogle Scholar
  69. Zhu XF, Lei GJ, Jiang T, Liu Y, Li GX, Zheng SJ (2012) Cell wall polysaccharides are involved in P-deficiency-induced Cd exclusion in Arabidopsis thaliana. Planta 236:989–997.  https://doi.org/10.1007/s00425-012-1652-8 CrossRefGoogle Scholar
  70. Zhu XF, Wang ZW, Wan JX, Sun Y, Wu YR, Li GX, Shen RF, Zheng SJ (2015) Pectin enhances rice (Oryza sativa) root phosphorus remobilization. J Exp Bot 66:1017–1024.  https://doi.org/10.1093/jxb/eru461 CrossRefGoogle Scholar
  71. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar
  72. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14.  https://doi.org/10.1111/j.2041-210X.2009.00001.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de BiociênciasUniversidade Estadual Paulista “Júlio de Mesquita Filho”São PauloBrazil
  2. 2.Instituto de BiologiaUniversidade Federal de UberlândiaUberlândiaBrazil
  3. 3.Institute of Biology and Environmental SciencesUniversity of OldenburgOldenburgGermany

Personalised recommendations