Advertisement

Protoplasma

pp 1–24 | Cite as

Plant triterpenoid saponins: biosynthesis, in vitro production, and pharmacological relevance

  • Tanya Biswas
  • Upendra N. DwivediEmail author
Review Article

Abstract

The saponins are a diverse class of natural products, with a broad scale distribution across different plant species. Chemically characterized as triterpenoid glycosides, they posses a 30C oxidosqualene precursor-based aglycone moiety (sapogenin), to which glycosyl residues are subsequently attached to yield the corresponding saponin. Based on the chemically distinct aglycone moieties, broadly, they are divided into triterpenoid saponins (dammaranes, ursanes, oleananes, lupanes, hopanes, etc.) and the sterol glycosides. This review aims to present in detail the biosynthesis patterns of the different aglycones from a common precursor and their glycosylation patterns to yield the functionally active glycoside. The review also presents recent advances in the pharmacological activities of these saponins, particularly as potent anti-neoplastic pharmacophores, antioxidants, or anti-viral/antibacterial agents. Since alternate production pedestals for these pharmacologically important triterpenes via cell and tissue cultures are an attractive option for their sustainable production, recent trends in the variety and scale of in vitro production of plant triterpenoids have also been discussed.

Keywords

Saponin Triterpene MVA pathway In vitro production Pharmacological significance 

Notes

Funding information

Financial supports from Department of Science and Technology (SERB-DST) in the form of National Post Doctorate Fellowship awarded to Tanya Biswas; Department of Higher Education, Government of UP under Center of Excellence in Computational Biology and Institute for Development of Advanced Computing, ONGC Centre for Advanced Studies, University of Lucknow, Lucknow.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aalbersberg W, Singh Y (1991) Dammarane triterpenoids from Dysoxylum richii. Phytochemistry 30:921–926CrossRefGoogle Scholar
  2. Akihisa T, Hayakawa Y, Tokuda H, Banno N, Shimizu N, Suzuki T, Kimura Y (2007) Cucurbitane glycosides from the fruits of Siraitia grosvenorii and their inhibitory effects on Epstein− Barr virus activation. J Nat Prod 70(5):783–788CrossRefPubMedGoogle Scholar
  3. Ali-Seyed M, Jantan I, Vijayaraghavan K, Bukhari SN (2016) Betulinic acid: recent advances in chemical modifications, effective delivery, and molecular mechanisms of a promising anticancer therapy. Chem Biol Drug Des 87(4):517–536CrossRefPubMedGoogle Scholar
  4. Amalraj A, Gopi S (2017) Medicinal properties of Terminalia arjuna (Roxb.) Wight & Arn.: a review. J Tradit Complement Med 7(1):65–78CrossRefPubMedGoogle Scholar
  5. Anbarasi K, Vani G, Balakrishna K, Devi CS (2005) Effect of bacoside A on membrane-bound ATPases in the brain of rats exposed to cigarette smoke. J Biochem Mol Toxicol 19(1):59–65CrossRefPubMedGoogle Scholar
  6. Augustin JM, Kuzina V, Andersen SB, Bak S (2011) Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 72:435–457CrossRefPubMedGoogle Scholar
  7. Avin BV, Prabhu T, Ramesh CK, Vigneshwaran V, Riaz M, Jayashree K, Prabhakar BT (2014) New role of lupeol in reticence of angiogenesis, the cellular parameter of neoplastic progression in tumorigenesis models through altered gene expression. Biochem Biophys Res Commun 448(2):139–144CrossRefGoogle Scholar
  8. Azerad R (2016) Chemical structures, production and enzymatic transformations of sapogenins and saponins from Centella asiatica (L.) Urban. Fitoterapia 114:168–187CrossRefPubMedGoogle Scholar
  9. Badshah H, Ali T, Rehman SU, Amin FU, Ullah F, Kim TH, Kim MO (2016) Protective effect of lupeol against lipopolysaccharide-induced neuroinflammation via the p38/c-Jun N-terminal kinase pathway in the adult mouse brain. J NeuroImmune Pharmacol 11(1):48–60CrossRefPubMedGoogle Scholar
  10. Bai MS, Gao JM, Fan C, Yang SX, Zhang G, Zheng CD (2010) Bioactive dammarane-type triterpenoids derived from the acid hydrolysate of Gynostemma pentaphyllum saponins. Food Chem 119(1):306–310CrossRefGoogle Scholar
  11. Banno N, Akihisa T, Tokuda H, Yasukawa K, Higashihara H, Ukiya M, Watanabe K, Kimura Y, Hasegawa JI, Nishino H (2004) Triterpene acids from the leaves of Perilla frutescens and their anti-inflammatory and antitumor-promoting effects. Biosci Biotechnol Biochem 68(1):85–90CrossRefPubMedGoogle Scholar
  12. Baricevic D, Sosa S, Della Loggia R, Tubaro A, Simonovska B, Krasna A, Zupancic A (2001) Topical anti-inflammatory activity of Salvia officinalis L. leaves: the relevance of ursolic acid. J Ethnopharmacol 75(2–3):125–132CrossRefPubMedGoogle Scholar
  13. Benosman A, Richomme P, Sevenet T, Perromat G, Hadi AH, Bruneton J (1995) Tirucallane triterpenes from the stem bark of Aglaia leucophylla. Phytochemistry 40(5):1485–1487CrossRefGoogle Scholar
  14. Bhandari SP, Garg HS, Agrawal PK, Bhakuni DS (1990) Ursane triterpenoids from Nepeta eriostachia. Phytochemistry 29(12):3956–3958CrossRefGoogle Scholar
  15. Bhandari P, Kumar N, Singh B, Kaur I (2009) Dammarane triterpenoid saponins from Bacopa monnieri. Can J Chem 87(9):1230–1234CrossRefGoogle Scholar
  16. Biswas T, Gupta M, Achari B, Pal BC (2005) Hopane-type saponins from Glinus lotoides Linn. Phytochemistry 66:621–626CrossRefPubMedGoogle Scholar
  17. Biswas T, Singh M, Mathur AK, Mathur A (2015) A dual purpose cell line of an Indian congener of ginseng—Panax sikkimensis with distinct ginsenoside and anthocyanin production profiles. Protoplasma 252(2):697–703CrossRefPubMedGoogle Scholar
  18. Biswas T, Kalra A, Mathur AK, Lal RK, Singh M, Mathur A (2016) Elicitors’ influenced differential ginsenoside production and exudation into medium with concurrent Rg3/Rh2 panaxadiol induction in Panax quinquefolius cell suspensions. Appl Microbiol Biotechnol 100(11):4909–4922CrossRefPubMedGoogle Scholar
  19. Biswas T, Mathur AK, Mathur A (2017) A literature update elucidating production of Panax ginsenosides with a special focus on strategies enriching the anti-neoplastic minor ginsenosides in ginseng preparations. Appl Microbiol Biotechnol 101(10):4009–4032CrossRefPubMedGoogle Scholar
  20. Biswas T, Pandey SS, Maji D, Gupta V, Kalra A, Singh M, Mathur A, Mathur AK (2018) Enhanced expression of ginsenoside biosynthetic genes and in vitro ginsenoside production in elicited Panax sikkimensis (Ban) cell suspensions. Protoplasma 255:1147–1160CrossRefPubMedGoogle Scholar
  21. Bonfill M, Mangas S, Moyano E, Cusido RM, Palazón J (2011) Production of centellosides and phytosterols in cell suspension cultures of Centella asiatica. Plant Cell Tissue Organ Cult 104(1):61–67CrossRefGoogle Scholar
  22. Brazier-Hicks M, Gershater M, Dixon D, Edwards R (2018) Substrate specificity and safener inducibility of the plant UDP-glucose-dependent family 1 glycosyltransferase super-family. Plant Biotechnol J 16(1):337–348CrossRefPubMedGoogle Scholar
  23. Caldwell CG, Franzblau SG, Suarez E, Timmermann BN (2000) Oleanane triterpenes from Junellia tridens. J Nat Prod 63(12):1611–1614CrossRefPubMedGoogle Scholar
  24. Cao P, Liang G, Gao X, Wang X, Li Z (2013) Three new nor-dammarane triterpenoids from Dysoxylum hainanense with particular cytotoxicity against glioma cell line. Arch Pharm Res 36(3):322–326CrossRefPubMedGoogle Scholar
  25. Cargnin ST, Gnoatto SB (2017) Ursolic acid from apple pomace and traditional plants: a valuable triterpenoid with functional properties. Food Chem 220:477–489CrossRefPubMedGoogle Scholar
  26. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ch B, Rao K, Gandi S, Giri A (2012) Abiotic elicitation of gymnemic acid in the suspension cultures of Gymnema sylvestre. World J Microbiol Biotechnol 28(2):741–747CrossRefPubMedGoogle Scholar
  28. Cháirez-Ramírez MH, Moreno-Jiménez MR, González-Laredo RF, Gallegos-Infante JA (2016) Rocha-Guzmán, N.E. Lupane-type triterpenes and their anti-cancer activities against most common malignant tumors: a review. EXCLI J 15:758PubMedPubMedCentralGoogle Scholar
  29. Chakravarty AK, Sarkar T, Masuda K, Shiojima K, Nakane T, Kawahara N (2001) Bacopaside I and II: two pseudojujubogenin glycosides from Bacopa monniera. Phytochemistry 58:553–556CrossRefPubMedGoogle Scholar
  30. Chang CI, Chen CR, Liao YW, Cheng HL, Chen YC, Chou CH (2006) Cucurbitane-type triterpenoids from Momordica charantia. J Nat Prod 69(8):1168–1171CrossRefPubMedGoogle Scholar
  31. Chang CI, Chen CR, Liao YW, Cheng HL, Chen YC, Chou CH (2008) Cucurbitane-type triterpenoids from the stems of Momordica charantia. J Nat Prod 71(8):1327–1330CrossRefPubMedGoogle Scholar
  32. Chapagain BP, Saharan V, Wiesman Z (2008) Larvicidal activity of saponins from Balanites aegyptiaca callus against Aedes aegypti mosquito. Bioresour Technol 99(5):1165–1168CrossRefPubMedGoogle Scholar
  33. Chen JC, Zhang GH, Zhang ZQ, Qiu MH, Zheng YT, Yang LM, Yu KB (2007) Octanorcucurbitane and cucurbitane triterpenoids from the tubers of Hemsleya endecaphylla with HIV-1 inhibitory activity. J Nat Prod 71(1):153–155CrossRefPubMedGoogle Scholar
  34. Chen J, Tian R, Qiu M, Lu L, Zheng Y, Zhang Z (2008) Trinorcucurbitane and cucurbitane triterpenoids from the roots of Momordica charantia. Phytochemistry 69(4):1043–1048CrossRefPubMedGoogle Scholar
  35. Chen C, Qiang S, Lou L, Zhao W (2009) Cucurbitane-type triterpenoids from the stems of Cucumis melo. J Nat Prod 72(5):824–829CrossRefPubMedGoogle Scholar
  36. Cheng Z, Yu B, Yang X (2002) 27-Nor-triterpenoid glycosides from Mitragyna inermis. Phytochemistry 61:379–382CrossRefPubMedGoogle Scholar
  37. Cheng X, Qin J, Zeng Q, Zhang S, Zhang F, Yan S, Jin H, Zhang W (2011) Taraxasterane-type triterpene and neolignans from Geum japonicum Thunb. var. chinense F. Bolle. Planta Med 77(18):2061–2065CrossRefPubMedGoogle Scholar
  38. Cheng JT, Han YQ, He J, De Wu X, Dong LB, Peng LY, Li Y, Zhao QS (2013) Two new tirucallane triterpenoids from the leaves of Aquilaria sinensis. Arch Pharm Res 36(9):1084–1089CrossRefPubMedGoogle Scholar
  39. Chodisetti B, Rao K, Gandi S, Giri A (2013) Improved gymnemic acid production in the suspension cultures of Gymnema sylvestre through biotic elicitation. Plant Biotechnol Rep 7(4):519–525CrossRefGoogle Scholar
  40. Chodisetti B, Rao K, Gandi S, Giri A (2015) Gymnemic acid enhancement in the suspension cultures of Gymnema sylvestre by using the signaling molecules—methyl jasmonate and salicylic acid. In Vitro Cell Dev Biol Plant 51(1):88–92CrossRefGoogle Scholar
  41. Choi JY, Na M, Ho Lee S, Young Bae E, Yeon Kim B, Seog Ahn J (2009) Isolation of betulinic acid, its methyl ester and guaiane sesquiterpenoids with protein tyrosine phosphatase 1B inhibitory activity from the roots of Saussurea lappa CB Clarke. Molecules 14(1):266–272CrossRefPubMedGoogle Scholar
  42. Corea G, Fattorusso E, Lanzotti V, Capasso R, Izzo AA (2005) Antipasmodic saponins from bulbs of red onion, Allium cepa L. Var. Tropea. J Agric Food Chem 53:935–940CrossRefPubMedGoogle Scholar
  43. Dall'Acqua S, Catanzaro D, Cocetta V, Igl N, Ragazzi E, Giron MC, Cecconello L, Montopoli M (2016) Protective effects of ψ taraxasterol 3-O-myristate and arnidiol 3-O-myristate isolated from Calendula officinalis on epithelial intestinal barrier. Fitoterapia 109:230–235CrossRefPubMedGoogle Scholar
  44. de Sá MS, Costa JF, Krettli AU, Zalis MG, de Azevedo Maia GL, Sette IM, de Amorim Câmara C, Barbosa Filho JM, Giulietti-Harley AM, dos Santos RR, Soares MB (2009) Antimalarial activity of betulinic acid and derivatives in vitro against Plasmodium falciparum and in vivo in P. berghei-infected mice. Parasitol Res 105(1):275CrossRefPubMedGoogle Scholar
  45. Dey A (2011) Alstonia scholaris R. Br.(Apocynaceae): phytochemistry and pharmacology: a concise review. J Appl Pharm 1(06):2011Google Scholar
  46. Ding W, Zeng F, Xu L, Chen Y, Wang Y, Wei X (2011) Bioactive dammarane-type saponins from Operculina turpethum. J Nat Prod 74(9):1868–1874CrossRefPubMedGoogle Scholar
  47. Dittharot K, Dakeng S, Suebsakwong P, Suksamrarn A, Patmasiriwat P, Promkan M (2019) Cucurbitacin B induces hypermethylation of oncogenes in breast cancer cells. Planta Med 85(05):370–378CrossRefPubMedGoogle Scholar
  48. do Nascimento PG, Lemos TL, Bizerra A, Arriaga Â, Ferreira DA, Santiago GM, Braz-Filho R, Costa JG (2014) Antibacterial and antioxidant activities of ursolic acid and derivatives. Molecules 19(1):1317–1327CrossRefPubMedPubMedCentralGoogle Scholar
  49. Domínguez-Carmona DB, Escalante-Erosa F, García-Sosa K, Ruiz-Pinell G, Gutierrez-Yapu D, Chan-Bacab MJ, Giménez-Turba A, Peña-Rodríguez LM (2010) Antiprotozoal activity of betulinic acid derivatives. Phytomedicine 17(5):379–382CrossRefPubMedGoogle Scholar
  50. Drag M, Surowiak P, Drag-Zalesinska M, Dietel M, Lage H, Oleksyszyn J (2009) Comparison of the cytotoxic effects of birch bark extract, betulin and betulinic acid towards human gastric carcinoma and pancreatic carcinoma drug-sensitive and drug-resistant cell lines. Molecules 14:1639–1651CrossRefPubMedPubMedCentralGoogle Scholar
  51. Dzubak P, Hajduch M, Vydra D, Hustova A, Kvasnica M, Biedermann D, Markova L, Urban M, Sarek J (2006) Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat Prod Rep 23(3):394–411CrossRefPubMedGoogle Scholar
  52. El-Askary HI (2005) Terpenoids from Cleome droserifolia (Forssk.) Del. Molecules 10(8):971–977CrossRefPubMedPubMedCentralGoogle Scholar
  53. Farimani MM, Bahadori MB, Koulaei SA, Salehi P, Ebrahimi SN, Khavasi HR, Hamburger M (2015) New ursane triterpenoids from Salvia urmiensis Bunge: absolute configuration and anti-proliferative activity. Fitoterapia 106:1–6CrossRefPubMedGoogle Scholar
  54. Fontanay S, Grare M, Mayer J, Finance C, Duval RE (2008) Ursolic, oleanolic and betulinic acids: antibacterial spectra and selectivity indexes. J Ethnopharmacol 120:272–276CrossRefPubMedGoogle Scholar
  55. Foo J, Saiful Yazan L, Tor Y, Wibowo A, Ismail N, How C et al (2015) Induction of cell cycle arrest and apoptosis by betulinic acid-rich fraction from Dillenia suffruticosa root in MCF-7 cells involved p53/p21 and mitochondrial signalling pathway. J Ethnopharmacol 166:270–278CrossRefPubMedGoogle Scholar
  56. Fraga BM, Diaz CE, Amador LJ (2013) Teydealdehyde, a C23-terpenoid from transformed root cultures of Nepeta teydea. Tetrahedron Lett 54(32):4337–4338CrossRefGoogle Scholar
  57. Frighetto N, Welendorf RM, da Silva AM, Nakamura MJ, Siani AC (2005) Purication of betulinic acid from Eugenia florida (Myrtaceae) by high-speed counter-current chromatography. Phytochem Anal 16(6):411–414CrossRefPubMedGoogle Scholar
  58. Fulda S (2008) Betulinic acid for cancer treatment and prevention. Int J Mol Sci 9(6):1096–1107CrossRefPubMedPubMedCentralGoogle Scholar
  59. Gallego A, Ramirez-Estrada K, Vidal-Limon HR, Hidalgo D, Lalaleo L, Khan Kayani W, Cusido RM, Palazon J (2014) Biotechnological production of centellosides in cell cultures of Centella asiatica (L) Urban. Eng Life Sci 14(6):633–642CrossRefGoogle Scholar
  60. Gao Y, Islam MS, Tian J, Lui VW, Xiao D (2014) Inactivation of ATP citrate lyase by Cucurbitacin B: a bioactive compound from cucumber, inhibits prostate cancer growth. Cancer Lett 349(1):15–25CrossRefPubMedGoogle Scholar
  61. Gauthier C, Legault J, Piochon M, Lavoie S, Tremblay S, Pichette A (2009) Synthesis, cytotoxicity, and haemolytic activity of chacotrioside Lupane-type neosaponins and their germanicane-type rearrangement products. Bioorg Med Chem Lett 19(8):2310–2314CrossRefPubMedGoogle Scholar
  62. Gevrenova R, Stancheva T, Voynikov Y, Laurain-Mattar D, Henry M (2010) Root in vitro cultures of six Gypsophila species and their saponin contents. Enzym Microb Technol 47(3):97–104CrossRefGoogle Scholar
  63. Godugu C, Patel A, Doddapaneni R, Somagoni J, Singh M (2014) Approaches to improve the oral bioavailability and effects of novel anticancer drugs berberine and betulinic acid. PLoS One 9:e89919CrossRefPubMedPubMedCentralGoogle Scholar
  64. Grosvenor SN, Mascoll K, McLean S, Reynolds WF, Tinto WF (2006) Tirucallane, apotirucallane, and octanorapotirucallane triterpenes of Simarouba amara. J Nat Prod 69(9):1315–1318CrossRefPubMedGoogle Scholar
  65. Guinda A, Rada M, Delgado T, Gutiérrez-Adánez P, Castellano JM (2010) Pentacyclic triterpenoids from olive fruit and leaf. J Agric Food Chem 58(17):9685–9691CrossRefPubMedGoogle Scholar
  66. Guo C, Wang JS, Zhang Y, Yang L, Wang PR, Kong LY (2012) Relationship of chemical structure to in vitro anti-inflammatory activity of tirucallane triterpenoids from the stem barks of Aphanamixis grandifolia. Chem Pharm Bull 60(8):1003–1010CrossRefPubMedGoogle Scholar
  67. Han JH, Tuan NQ, Park MH, Quan KT, Oh J, Heo KS, Na M, Myung CS (2018) Cucurbitane triterpenoids from the fruits of Momordica Charantia improve insulin sensitivity and glucose homeostasis in streptozotocin-induced diabetic mice. Mol Nutr Food Res 62(7):1700769CrossRefGoogle Scholar
  68. Hanafy MS, Abou-Setta LM (2007) Saponins production in shoot and callus cultures of Gypsophila paniculata. J Appl Sci Res 3:1045–1049Google Scholar
  69. Hao J, Pei Y, Ji G, Li W, Feng S, Qiu S (2011) Autophagy is induced by 3β-O-succinyl-lupeol (LD9-4) in A549 cells via up-regulation of Beclin 1 and down-regulation mTOR pathway. Eur J Pharmacol 670:29–38CrossRefPubMedGoogle Scholar
  70. Haque ME, Alam MB, Hossain MS (2011) The efficacy of cucurbitane type triterpenoids, glycosides and phenolic compounds isolated from Momordica charantia: a review. Int J Pharm Sci Res 2(5):1135Google Scholar
  71. Haralampidis K, Trojanowska M, Osbourn AE (2002) Biosynthesis of triterpenoid saponins in plants. Adv Biochem Eng 75:31–49Google Scholar
  72. Hernandez V, De Leo M, Cotugno R, Braca A, De Tommasi N, Severino L (2018) New tirucallane-type triterpenoids from Guarea guidonia. Planta Med 84:716–720CrossRefPubMedGoogle Scholar
  73. Homhual S, Bunyapraphatsara N, Kondratyuk T, Herunsalee A, Chaukul W, Pezzuto JM, Fong HH, Zhang HJ (2006) Bioactive dammarane triterpenes from the mangrove plant Bruguiera gymnorrhiza. J Nat Prod 69(3):421–424CrossRefPubMedGoogle Scholar
  74. Hsiao PC, Liaw CC, Hwang SY, Cheng HL, Zhang LJ, Shen CC, Hsu FL, Kuo YH (2013) Antiproliferative and hypoglycemic cucurbitane-type glycosides from the fruits of Momordica charantia. J Agric Food Chem 61(12):2979–2986CrossRefPubMedGoogle Scholar
  75. Hu J, Song Y, Li H, Yang B, Mao X, Zhao Y, Shi X (2014) Cytotoxic and anti–inflammatory tirucallane triterpenoids from Dysoxylum binectariferum. Fitoterapia 99:86–91CrossRefPubMedGoogle Scholar
  76. Huang C, Zhong JJ (2013) Elicitation of ginsenoside biosynthesis in cell cultures of Panax ginseng by vanadate. Process Biochem (8):1227–1234Google Scholar
  77. Huang S, Ullrich SE, Bar-Eli M (1999) Regulation of tumor growth and metastasis by interleukin-10: the melanoma experience. J Interf Cytokine Res 19(7):697–703CrossRefGoogle Scholar
  78. Huang HC, Tsai WJ, Morris-Natschke SL, Tokuda H, Lee KH, Wu YC, Kuo YH (2006) Sapinmusaponins F− J, bioactive tirucallane-type saponins from the galls of Sapindus mukorossi. J Nat Prod 69(5):763–767CrossRefPubMedGoogle Scholar
  79. Huang HC, Wu MD, Tsai WJ, Liao SC, Liaw CC, Hsu LC, Wu YC, Kuo YH (2008) Triterpenoid saponins from the fruits and galls of Sapindus mukorossi. Phytochemistry 69(7):1609–1616CrossRefPubMedGoogle Scholar
  80. Huang HL, Wang CM, Wang ZH, Yao MJ, Han GT, Yuan JC, Gao K, Yuan CS (2011) Tirucallane-type triterpenoids from Dysoxylum lenticellatum. J Nat Prod 74(10):2235–2242CrossRefPubMedGoogle Scholar
  81. Huang C, Qian ZG, Zhong JJ (2013) Enhancement of ginsenoside biosynthesis in cell cultures of Panax ginseng by N, N′-dicyclohexylcarbodiimide elicitation. J Biotechnol 165:30–36CrossRefPubMedGoogle Scholar
  82. Huang YJ, Lu H, Yu XL, Zhang SW, Wang WQ, Fen LY, Xuan LJ (2014) Dammarane-type triterpenoids from Gentianella azurea. J Nat Prod 77(5):1201–1209CrossRefPubMedGoogle Scholar
  83. Huang QX, Chen HF, Luo XR, Zhang YX, Yao X, Zheng X (2018) Structure and anti-HIV activity of betulinic acid analogues. Curr Med Sci 38(3):387–397CrossRefPubMedGoogle Scholar
  84. Hung TM, Thu CV, Cuong TD, Hung NP, Kwack SJ, Huh JI, Min BS, Choi JS, Lee HK, Bae K (2010) Dammarane-type glycosides from Gynostemma pentaphyllum and their effects on IL-4-induced eotaxin expression in human bronchial epithelial cells. J Nat Prod 73(2):192–196CrossRefPubMedGoogle Scholar
  85. Hussain AI, Rathore HA, Sattar MZ, Chatha SA, Sarker SD, Gilani AH (2014) Citrullus colocynthis (L.) Schrad (bitter apple fruit): a review of its phytochemistry, pharmacology, traditional uses and nutritional potential. J Ethnopharmacol 155(1):54–66CrossRefPubMedGoogle Scholar
  86. Ikeda Y, Murakami A, Ohigashi H (2008) Ursolic acid: an anti-and pro-inflammatory triterpenoid. Mol Nutr Food Res 52(1):26–42CrossRefPubMedGoogle Scholar
  87. Inayama S, Hori H, Gm P, Nagasawa H, Ageta H (1989) Isolation of a hopane-type triterpenoid, zeorin, from a higher plant, Tripterygium regelii. Chem Pharm Bull 37(10):2836–2837CrossRefGoogle Scholar
  88. Ionkova I, Momekov G, Proksch P (2010) Effects of cycloartane saponins from hairy roots of Astragalus membranaceus Bge., on human tumor cell targets. Fitoterapia 81(5):447–451CrossRefPubMedGoogle Scholar
  89. Jäger S, Trojan H, Kopp T, Laszczyk MN, Scheffler A (2009) Pentacyclic triterpene distribution in various plants–rich sources for a new group of multi-potent plant extracts. Molecules 14(6):2016–2031CrossRefPubMedPubMedCentralGoogle Scholar
  90. James J, Dubery I (2009) Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.) Urban. Molecules 14(10):3922–3941CrossRefPubMedPubMedCentralGoogle Scholar
  91. Janani P, Sivakumari K, Geetha A, Yuvaraj S, Parthasarathy C (2010) Bacoside A downregulates matrix metalloproteinases 2 and 9 in DEN-induced hepatocellular carcinoma. Cell Biochem Funct 28(2):164–169CrossRefPubMedGoogle Scholar
  92. Jayaprakasam B, Olson LK, Schutzki RE, Tai MH, Nair MG (2006) Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in Cornelian cherry (Cornus mas). J Agric Food Chem 54(1):243–248CrossRefPubMedGoogle Scholar
  93. Jeong CS, Murthy HN, Hahn EJ, Lee HL, Paek KY (2009) Inoculum size and auxin concentration influence the growth of adventitious roots and accumulation of ginsenosides in suspension cultures of ginseng (Panax ginseng CA Meyer). Acta Physiol Plant 31:219–222CrossRefGoogle Scholar
  94. Jesus JA, Lago JH, Laurenti MD, Yamamoto ES, Passero LF (2015) Antimicrobial activity of oleanolic and ursolic acids: an update. Evid Based Complement Alternat Med 620472:1–14Google Scholar
  95. Jiang H, Xing XD, Yan ML, Guo XY, Yang L (2018a) New cucurbitane-type triterpenoid glucosides from the tubers of Hemsleya amabilis with anti-tumor activity. J Carbohydr Chem 37(6):383–391CrossRefGoogle Scholar
  96. Jiang N, Zhang BY, Dong LM, Lv JW, Lu C, Wang Q, Fan LX, Zhang HX, Pan RL, Liu XM (2018b) Antidepressant effects of dammarane sapogenins in chronic unpredictable mild stress-induced depressive mice. Phytother Res 32(6):1023–1029CrossRefPubMedGoogle Scholar
  97. Jiménez-Arellanes A, Luna-Herrera J, Cornejo-Garrido J, López-García S, Castro-Mussot ME, Meckes-Fischer M, Mata-Espinosa D, Marquina B, Torres J, Hernández-Pando R (2013) Ursolic and oleanolic acids as antimicrobial and immunomodulatory compounds for tuberculosis treatment. BMC Complement Altern Med 13(1):258CrossRefPubMedPubMedCentralGoogle Scholar
  98. Jing L, Zhang YM, Luo JG, Kong LY (2015) Tirucallane-type triterpenoids from the fruit of Ficus carica and their cytotoxic activity. Chem Pharm Bull 63(3):237–243CrossRefPubMedGoogle Scholar
  99. Joo EJ, Ha YW, Shin H, Son SH, Kim YS (2009) Generation and characterization of monoclonal antibody to ginsenoside Rg3. Biol Pharm Bull 32(4):548–552CrossRefPubMedGoogle Scholar
  100. Juan ME, Planas JM, Ruiz-Gutierrez V, Daniel H, Wenzel U (2008) Antiproliferative and apoptosis-inducing effects of maslinic and oleanolic acids, two pentacyclic triterpenes from olives, on HT-29 colon cancer cells. Br J Nutr 100(1):36–43CrossRefPubMedGoogle Scholar
  101. Jung SC, Kim W, Park SC, Jeong J, Park MK, Lim S, Lee Y, Im WT, Lee JH, Choi G, Kim SC (2014) Two ginseng UDP-glycosyltransferases synthesize ginsenoside Rg3 and Rd. Plant Cell Physiol 55(12):2177–2188CrossRefPubMedGoogle Scholar
  102. Kabir SR, Nabi MM, Nurujjaman M, Reza MA, Alam AK, Zaman RU, Khalid-Bin-Ferdaus KM, Amin R, Khan MM, Hossain MA, Uddin MS (2015) Momordica charantia seed lectin: toxicity, bacterial agglutination and antitumor properties. Appl Biochem Biotechnol 175(5):2616–2628CrossRefPubMedGoogle Scholar
  103. Kamperdick C, Lien TP, Adam G, Sung TV (2003) Apotirucallane and tirucallane triterpenoids from Luvunga sarmentosa. J Nat Prod 66(5):675–678CrossRefPubMedGoogle Scholar
  104. Kaushik U, Aeri V, Mir SR (2015) Cucurbitacins–an insight into medicinal leads from nature. Pharmacogn Rev 9(17):12CrossRefPubMedPubMedCentralGoogle Scholar
  105. Keller AC, Ma J, Kavalier A, He K, Brillantes AM, Kennelly EJ (2011) Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro. Phytomedicine 19(1):32–37CrossRefPubMedPubMedCentralGoogle Scholar
  106. Khedr AI, Ibrahim SR, Mohamed GA, Ahmed HE, Ahmad AS, Ramadan MA, El-Baky AE, Yamada K, Ross SA (2016) New ursane triterpenoids from Ficus pandurata and their binding affinity for human cannabinoid and opioid receptors. Arch Pharm Res 39(7):897–911CrossRefPubMedPubMedCentralGoogle Scholar
  107. Kim JH (2018) Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. J Ginseng Res 42(3):264–269CrossRefPubMedGoogle Scholar
  108. Kim J, Jang DS, Kim H, Kim JS (2009a Jul 1) Anti-lipase and lipolytic activities of ursolic acid isolated from the roots of Actinidia arguta. Arch Pharm Res 32(7):983–987CrossRefPubMedGoogle Scholar
  109. Kim OT, Bang KH, Kim YC, Hyun DY, Kim MY, Cha SW (2009b) Upregulation of ginsenoside and gene expression related to triterpene biosynthesis in ginseng hairy root cultures elicited by methyl jasmonate. Plant Cell Tissue Organ Cult 98(1):25–33CrossRefGoogle Scholar
  110. Kim GS, Jeong TS, Kim YO, Baek NI, Cha SW, Lee JW, Song KS (2010a) Human acyl-CoA: cholesterol acyltransferase-inhibiting dammarane triterpenes from Rhus chinensis. J Korean Soc Appl Biol Chem 53(4):417–421CrossRefGoogle Scholar
  111. Kim KH, Choi SU, Kim YC, Lee KR (2010b) Tirucallane triterpenoids from Cornus walteri. J Nat Prod 74(1):54–59CrossRefPubMedGoogle Scholar
  112. Kim OT, Kim SH, Ohyama K, Muranaka T, Choi YE, Lee HY, Kim MY, Hwang B (2010c) Upregulation of phytosterol and triterpene biosynthesis in Centella asiatica hairy roots overexpressed ginseng farnesyl diphosphate synthase. Plant Cell Rep 29(4):403–411CrossRefPubMedGoogle Scholar
  113. Kim YJ, Zhang D, Yang DC (2015) Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv 33(6):717–735CrossRefPubMedGoogle Scholar
  114. Kim KS, Lee DS, Kim DC, Yoon CS, Ko W, Oh H, Kim YC (2016) Anti-inflammatory effects and mechanisms of action of coussaric and betulinic acids isolated from Diospyros kaki in lipopolysaccharide-stimulated RAW 264.7 macrophages. Molecules 21(9):1206CrossRefPubMedCentralGoogle Scholar
  115. Kim JH, Yi YS, Kim MY, Cho JY (2017) Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res 41(4):435–443CrossRefPubMedGoogle Scholar
  116. Kimura Y, Akihisa T, Yuasa N, Ukiya M, Suzuki T, Toriyama M, Motohashi S, Tokuda H (2005) Cucurbitane-type triterpenoids from the fruit of Momordica charantia. J Nat Prod 68(5):807–809CrossRefPubMedGoogle Scholar
  117. Kochan E, Wasiela M, Sienkiewicz M (2013) The production of ginsenosides in hairy root cultures of American ginseng, Panax quinquefolium L. and their antimicrobial activity. In Vitro Cell Dev Biol Plant 49:24–29CrossRefPubMedGoogle Scholar
  118. Kong L, Li S, Liao Q, Zhang Y, Sun R, Zhu X, Zhang Q, Wang J, Wu X, Fang X, Zhu Y (2013) Oleanolic acid and ursolic acid: novel hepatitis C virus antivirals that inhibit NS5B activity. Antivir Res 98(1):44–53CrossRefPubMedGoogle Scholar
  119. Koolen HH, da Silva FM, Gozzo FC, de Souza AQ, de Souza AD (2013) Antioxidant, antimicrobial activities and characterization of phenolic compounds from buriti (Mauritia flexuosa L. f.) by UPLC–ESI-MS/MS. Food Res Int 51(2):467–473CrossRefGoogle Scholar
  120. Ku JM, Kim SR, Hong SH, Choi HS, Seo HS, Shin YC, Ko SG (2015) Cucurbitacin D induces cell cycle arrest and apoptosis by inhibiting STAT3 and NF-κB signaling in doxorubicin-resistant human breast carcinoma (MCF7/ADR) cells. Mol Cell Biochem 409(1–2):33–43CrossRefPubMedPubMedCentralGoogle Scholar
  121. Kumar D, Mallick S, Vedasiromoni JR, Pal BC (2010) Anti-leukemic activity of Dillenia indica L. fruit extract and quantification of betulinic acid by HPLC. Phytomedicine 17(6):431–435CrossRefPubMedGoogle Scholar
  122. Kuo YH, Huang HC, Yang Kuo LM, Hsu YW, Lee KH, Chang FR, Wu YC (2005) New dammarane-type saponins from the galls of Sapindus mukorossi. J Agric Food Chem 53(12):4722–4727CrossRefPubMedGoogle Scholar
  123. Kuroyanagi M, Kawahara N, Sekita S, Satake M, Hayashi T, Takase Y, Masuda K (2003) Dammarane-type triterpenes from the Brazilian medicinal plant Cordia multispicata. J Nat Prod 66(10):1307–1312CrossRefPubMedGoogle Scholar
  124. Lakhal H, Kabouche A, Magid AA, Voutquenne-Nazabadioko L, Harakat D, Kabouche Z (2014) Triterpenoids from Salvia argentea var. aurasiaca (Pomel) Batt. & Trab.and their chemotaxonomic significance. Phytochemistry 102:145–151CrossRefPubMedGoogle Scholar
  125. Lambert E, Faizal A, Geelen D (2011) Modulation of triterpene saponin production: in vitro cultures, elicitation, and metabolic engineering. Appl Biochem Biotechnol 164(2):220–237CrossRefPubMedGoogle Scholar
  126. Largia MJ, Pothiraj G, Shilpha J, Ramesh M (2015) Methyl jasmonate and salicylic acid synergism enhances bacoside A content in shoot cultures of Bacopa monnieri (L.). Plant Cell Tissue Organ Cult 122(1):9–20CrossRefGoogle Scholar
  127. Lee T, Castilho A, Cheung V, Tang K, Ma S, Ng I (2010) Lupeol targets liver tumor-initiating cells through phosphatase and tensin homolog modulation. Hepatology 53:160–170CrossRefPubMedGoogle Scholar
  128. Lee C, Lee JW, Jin Q, Jang H, Jang HJ, Rho MC, Lee MK, Lee CK, Lee MK, Hwang BY (2015) Isolation and characterization of dammarane-type saponins from Gynostemma pentaphyllum and their inhibitory effects on IL-6-induced STAT3 activation. J Nat Prod 78(5):971–976CrossRefPubMedGoogle Scholar
  129. Lee S, Choi E, Jeon S, Zhi X, Yu J, Kim SH, Lee J, Park KM, Kim K (2018) Tirucallane triterpenoids from the stems and stem bark of Cornus walteri that control adipocyte and osteoblast differentiations. Molecules 23(11):2732CrossRefPubMedCentralGoogle Scholar
  130. Li J, Guo WJ, Yang QY (2002) Effects of ursolic acid and oleanolic acid on human colon carcinoma cell line HCT15. World J Gastroenterol 8(3):493CrossRefPubMedPubMedCentralGoogle Scholar
  131. Li MM, Su XQ, Sun J, Gu YF, Huang Z, Zeng KW, Zhang Q, Zhao YF, Ferreira D, Zjawiony JK, Li J (2014) Anti-inflammatory ursane-and oleanane-type triterpenoids from Vitex negundo var. cannabifolia. J Nat Prod 77(10):2248–2254CrossRefPubMedGoogle Scholar
  132. Li Y, Zheng Z, Zhou L, Liu Y, Wang H, Li L, Yao Q (2015) Five new cucurbitane triterpenoids with cytotoxic activity from Hemsleya jinfushanensis. Phytochem Lett 14:239–244CrossRefGoogle Scholar
  133. Li J, Goto M, Yang X, Morris-Natschke SL, Huang L, Chen CH, Lee KH (2016a) Fluorinated betulinic acid derivatives and evaluation of their anti-HIV activity. Bioorg Med Chem Lett 26(1):68–71CrossRefPubMedGoogle Scholar
  134. Li Y, Liu X, Jiang D, Lin Y, Wang Y, Li Q et al (2016b) Betulin induces reactive oxygen species-dependent apoptosis in human gastric cancer SGC7901 cells. Arch Pharm Res 39:1257–1265CrossRefPubMedGoogle Scholar
  135. Li P, Zhu N, Hu M, Wu H, Yu T, Wu T, Zhang D, Sun Z, Yang J, Ma G, Xu X (2017) New cucurbitane triterpenoids with cytotoxic activities from Hemsleya penxianensis. Fitoterapia 120:158–163CrossRefPubMedGoogle Scholar
  136. Liang Y, Zhao S, Zhang X (2009) Antisense suppression of cycloartenol synthase results in elevated ginsenoside levels in Panax ginseng hairy roots. Plant Mol Biol Report 27:298–304CrossRefGoogle Scholar
  137. Liby K, Honda T, Williams CR, Risingsong R, Royce DB, Suh N, Dinkova-Kostova AT, Stephenson KK, Talalay P, Sundararajan C, Gribble GW (2007) Novel semisynthetic analogues of betulinic acid with diverse cytoprotective, antiproliferative, and proapoptotic activities. Mol Cancer Ther 6(7):2113–2119CrossRefPubMedGoogle Scholar
  138. Lien TP, Kamperdick C, Schmidt J, Adam G, Van Sung T (2002) Apotirucallane triterpenoids from Luvunga sarmentosa (Rutaceae). Phytochemistry 60(7):747–754CrossRefPubMedGoogle Scholar
  139. Liu Y, Abreu P (2006) Tirucallane triterpenes from the roots of Ozoroa insignis. Phytochemistry 67(13):1309–1315CrossRefPubMedGoogle Scholar
  140. Liu H, Heilmann J, Rali T, Sticher O (2001) New tirucallane-type triterpenes from Dysoxylum variabile. J Nat Prod 64(2):159–163CrossRefPubMedGoogle Scholar
  141. Liu F, He Y, Liang Y, Wen L, Zhu Y, Wu Y, Zhao L, Li Y, Mao X, Liu H (2013) PI3-kinase inhibition synergistically promoted the anti-tumor effect of lupeol in hepatocellular carcinoma. Cancer Cell Int 13(1):108CrossRefPubMedPubMedCentralGoogle Scholar
  142. Liu Y, Bi T, Wang G, Dai W, Wu G, Qian L, Gao Q, Shen G (2015) Lupeol inhibits proliferation and induces apoptosis of human pancreatic cancer PCNA-1 cells through AKT/ERK pathways. Naunyn Schmiedeberg's Arch Pharmacol 388(3):295–304CrossRefGoogle Scholar
  143. Liu Y, Bi T, Shen G, Li Z, Wu G, Wang Z, Qian L, Gao Q (2016) Lupeol induces apoptosis and inhibits invasion in gallbladder carcinoma GBC-SD cells by suppression of EGFR/MMP-9 signaling pathway. Cytotechnology 68(1):123–133CrossRefPubMedGoogle Scholar
  144. Liu XY, Wang S, Li CJ, Ma J, Chen FY, Peng Y, Wang XL, Zhang DM (2018) Dammarane-type saponins from the leaves of Panax notoginseng and their neuroprotective effects on damaged SH-SY5Y cells. Phytochemistry 145:10–17CrossRefPubMedGoogle Scholar
  145. Lomchid P, Nasomjai P, Kanokmedhakul S, Boonmak J, Youngme S, Kanokmedhakul K (2017) Bioactive Lupane and hopane triterpenes from Lepisanthes senegalensis. Planta Med 83(03/04):334–340PubMedGoogle Scholar
  146. Luo XD, Wu SH, Ma YB, Wu DG (2000) Tirucallane triterpenoids from Dysoxylum hainanense. Phytochemistry 54(8):801–805CrossRefPubMedGoogle Scholar
  147. Ma G, Luo W, Lu J, Ma DL, Leung CH, Wang Y, Chen X (2016) Cucurbitacin E induces caspase-dependent apoptosis and protective autophagy mediated by ROS in lung cancer cells. Chem Biol Interact 253:1–9CrossRefPubMedGoogle Scholar
  148. Mai HL, Grellier P, Prost E, Lemoine P, Poullain C, Dumontet V, Deguin B, Vo TB, Michel S, Grougnet R (2016) Triterpenes from the exudate of Gardenia urvillei. Phytochemistry 122:193–202CrossRefPubMedGoogle Scholar
  149. Majumdar S, Garai S, Jha S (2011) Genetic transformation of Bacopa monnieri by wild type strains of Agrobacterium rhizogenes stimulates production of bacopa saponins in transformed calli and plants. Plant Cell Rep 30(5):941–954CrossRefPubMedGoogle Scholar
  150. Mallick MN, Khan W, Parveen R, Ahmad S (2017) Exploring the cytotoxic potential of triterpenoids-enriched fraction of Bacopa monnieri by implementing in vitro, in vivo, and in silico approaches. Pharmacogn Mag 13(Suppl 3):S595PubMedPubMedCentralGoogle Scholar
  151. Mamedova RP, Agzamova MA, Isaev MI (2003) Triterpenoid glycosides of Astragalus and their genins. LXX. Orbicoside, the first lanostane glycoside from Astragalus plants. Chem Nat Compd 39:583–585CrossRefGoogle Scholar
  152. Mangas S, Moyano E, Osuna L, Cusido RM, Bonfill M, Palazón J (2008) Triterpenoid saponin content and the expression level of some related genes in calli of Centella asiatica. Biotechnol Lett 30(10):1853CrossRefPubMedGoogle Scholar
  153. Masullo M, Calabria L, Gallotta D, Pizza C, Piacente S (2014) Saponins with highly hydroxylated oleanane-type aglycones from Silphium asteriscus L. Phytochemistry 97:70–80CrossRefPubMedGoogle Scholar
  154. Mathur A, Mathur AK (2010) In vitro saponin production in plant cell and tissue cultures. Medicinal plant biotechnology. CAB Internationals, UK, pp 115–137Google Scholar
  155. Mathur A, Gangwar A, Mathur AK, Verma P, Uniyal GC, Lal RK (2010) Growth kinetics and ginsenosides production in transformed hairy roots of American ginseng—Panax quinquefolium L. Biotechnol Lett 32:457–461CrossRefPubMedGoogle Scholar
  156. Meesapyodsuk D, Balsevich J, Reed DW, Covello PS (2007) Saponin biosynthesis in Saponaria vaccaria. cDNAs encoding β-amyrin synthase and a triterpene carboxylic acid glucosyltransferase. Plant Physiol 143(2):959–969CrossRefPubMedPubMedCentralGoogle Scholar
  157. Mehrotra S, Kumar Kukreja A, Singh Khanuja SP, Nath Mishra B (2008) Genetic transformation studies and scale up of hairy root culture of Glycyrrhiza glabra in bioreactor. Electron J Biotechnol 11(2):69–75CrossRefGoogle Scholar
  158. Mengoni F, Lichtner M, Battinelli L, Marzi M, Mastroianni CM, Vullo V, Mazzanti G (2002) In vitro anti-HIV activity of oleanolic acid on infected human mononuclear cells. Planta Med 68(02):111–114CrossRefPubMedGoogle Scholar
  159. Meselhy MR (1998) Hopane-type saponins from Polycarpon succulentum—II. Phytochemistry 48(8):1415–1421CrossRefGoogle Scholar
  160. Mireku EA, Kusari S, Eckelmann D, Mensah AY, Talontsi FM, Spiteller M (2015) Anti-inflammatory tirucallane triterpenoids from Anopyxis klaineana Pierre (Engl.),(Rhizophoraceae). Fitoterapia 106:84–91CrossRefPubMedGoogle Scholar
  161. Mongalo NI (2013) Peltophorum africanum Sond [Mosetlha]: a review of its ethnomedicinal uses, toxicology, phytochemistry and pharmacological activities. J Med Plant Res 7(48):3484–3491Google Scholar
  162. Moridi Farimani M, Nazarianpoor E, Rustaie A, Akhbari M (2017) Phytochemical constituents and biological activities of Cleome iberica DC. Nat Prod Res 31(11):1329–1332CrossRefPubMedGoogle Scholar
  163. Moses T, Pollier J, Thevelein JM, Goossens A (2013) Bioengineering of plant (tri) terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro. New Phytol 200(1):27–43CrossRefPubMedGoogle Scholar
  164. Moses T, Papadopoulou KK, Osbourn A (2014) Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol 49(6):439–462CrossRefPubMedPubMedCentralGoogle Scholar
  165. Muffler K, Leipold D, Scheller MC, Haas C, Steingroewer J, Bley T, Neuhaus HE, Mirata MA, Schrader J, Ulber R (2011) Biotransformation of triterpenes. Process Biochem 46(1):1–5CrossRefGoogle Scholar
  166. Muhammad D, Lalun N, Bobichon H, Debar EL, Gangloff SC, Nour M, Voutquenne-Nazabadioko L (2017) Triterpenoid saponins and other glycosides from the stems and bark of Jaffrea xerocarpa and their biological activity. Phytochemistry 141:121–130CrossRefPubMedGoogle Scholar
  167. Mulholland DA, Sewram V, Osborne R, Pegel KH, Connolly JD (1997) Cucurbitane triterpenoids from the leaves of Momordica foetida. Phytochemistry 45(2):391–395CrossRefGoogle Scholar
  168. Murthy HN, Georgiev MI, Kim YS, Jeong CS, Kim SJ, Park SY, Paek KY (2014) Ginsenosides: prospective for sustainable biotechnological production. Appl Microbiol Biotechnol 98(14):6243–6254CrossRefPubMedGoogle Scholar
  169. Mutai C, Abatis D, Vagias C, Moreau D, Roussakis C, Roussis V (2004) Cytotoxic lupane-type triterpenoids from Acacia mellifera. Phytochemistry 65(8):1159–1164CrossRefPubMedGoogle Scholar
  170. Nagella P, Thiruvengadam M, Jung SJ, Murthy HN, Chung IM (2013) Establishment of Gymnema sylvestre hairy root cultures for the production of gymnemic acid. Acta Physiol Plant 35:3067–3073CrossRefGoogle Scholar
  171. Naik PM, Manohar SH, Praveen N, Murthy HN (2010) Effects of sucrose and pH levels on in vitro shoot regeneration from leaf explants of Bacopa monnieri and accumulation of bacoside A in regenerated shoots. Plant Cell Tissue Organ Cult 100(2):235–239CrossRefGoogle Scholar
  172. Naik PM, Manohar SH, Murthy HN (2011) Effects of macro elements and nitrogen source on biomass accumulation and bacoside A production from adventitious shoot cultures of Bacopa monnieri (L.). Acta Physiol Plant 33(4):1553–1557CrossRefGoogle Scholar
  173. Nakanishi T, Inatomi Y, Nishi M, Murata H, Inada A, Aibara S (1995) Two new hopane-triterpene glycosides from a Fern, Diplazium subsinuatum (WALL. ex HOOK. et GREV.) TAGAWA. Chem Pharm Bull 43(12):2256–2260CrossRefGoogle Scholar
  174. Namdeo AG (2007 May) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1(1):69–79Google Scholar
  175. Ngo SN, Williams DB, Head RJ (2011) Rosemary and cancer prevention: preclinical perspectives. Crit Rev Food Sci Nutr 51(10):946–954CrossRefPubMedGoogle Scholar
  176. Ni W, Hua Y, Liu HY, Teng RW, Kong YC, Hu XY, Chen CX (2006) Tirucallane-type triterpenoid saponins from the roots of Sapindus mukorossi. Chem Pharm Bull 54(10):1443–1446CrossRefPubMedGoogle Scholar
  177. Ntalli NG, Cottiglia F, Bueno CA, Alché LE, Leonti M, Vargiu S, Bifulco E, Menkissoglu-Spiroudi U, Caboni P (2010) Cytotoxic tirucallane triterpenoids from Melia azedarach fruits. Molecules 15(9):5866–5877CrossRefPubMedPubMedCentralGoogle Scholar
  178. Nuanyai T, Sappapan R, Vilaivan T, Pudhom K (2011) Dammarane triterpenes from the apical buds of Gardenia collinsae. Phytochem Lett 4(2):183–186CrossRefGoogle Scholar
  179. Ohta T, Nakamura S, Nakashima S, Oda Y, Matsumoto T, Fukaya M, Yano M, Yoshikawa M, Matsuda H (2016) Chemical structures of constituents from the whole plant of Bacopa monniera. J Nat Med 70(3):404–411CrossRefPubMedGoogle Scholar
  180. Oliveira BH, Santos CA, Espíndola AP (2002) Determination of the triterpenoid, betulinic acid, in Doliocarpus schottianus by HPLC. Phytochem Anal 13(2):95–98CrossRefPubMedGoogle Scholar
  181. Oliveira FA, Chaves MH, Almeida FR, Lima RC Jr, Silva RM, Maia JL, Brito GA, Santos FA, Rao VS (2005) Protective effect of α-and β-amyrin, a triterpene mixture from Protium heptaphyllum (Aubl.)March.trunk wood resin, against acetaminophen-induced liver injury in mice. J Ethnopharmacol 98(1–2):103–108CrossRefPubMedGoogle Scholar
  182. Orisadipe AT, Adesomoju AA, D’Ambrosio M, Guerriero A, Okogun JI (2005) Tirucallane triterpenes from the leaf extract of Entandrophragma angolense. Phytochemistry 66(19):2324–2328CrossRefPubMedGoogle Scholar
  183. Osbourn A, Goss RJ, Field RA (2011) The saponins: polar isoprenoids with important and diverse biological activities. Nat Prod Rep 28:1261–1268CrossRefPubMedGoogle Scholar
  184. Ovesná Z, Kozics K, Slameňová D (2006) Protective effects of ursolic acid and oleanolic acid in leukemic cells. Mutat Res Fundam Mol Mech Mutagen 600(1):131–137CrossRefGoogle Scholar
  185. Ovesnaâ Z, Lkovaâ A, Thovaâ K (2004) Taraxasterol and b-sitosterol: new naturally compounds with chemoprotective/chemopreventive effects Minireview. Neoplasma 51(6):407Google Scholar
  186. Paek KY, Murthy HN, Hahn EJ, Zhong JJ (2009) Large scale culture of ginseng adventitious roots for production of ginsenosides. In: Biotechnology in China I. Springer, Berlin, pp 151–176CrossRefGoogle Scholar
  187. Pakhathirathien C, Karalai C, Ponglimanont C, Subhadhirasakul S, Chantrapromma K (2005) Dammarane triterpenes from the hypocotyls and fruits of Ceriops tagal. J Nat Prod 68(12):1787–1789CrossRefPubMedGoogle Scholar
  188. Pandey H, Pandey P, Singh S, Gupta R, Banerjee S (2015) Production of anti-cancer triterpene (betulinic acid) from callus cultures of different Ocimum species and its elicitation. Protoplasma 252(2):647–655CrossRefPubMedGoogle Scholar
  189. Park CS, Yoo MH, Noh KH, Oh DK (2010) Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl Microbiol Biotechnol 87(1):9–19CrossRefPubMedGoogle Scholar
  190. Peng L, Zhou Y, Kong DY, Zhang WD (2010) Antitumor activities of dammarane triterpene saponins from Bacopa monniera. Phytother Res 24(6):864–868PubMedGoogle Scholar
  191. Phan NH, Thuan NT, Ngoc NT, Huong PT, Thao NP, Cuong NX, Van Thanh N, Nam NH, Van Kiem P, Van Minh C (2014) Two tirucallane derivatives from Paramignya scandens and their cytotoxic activity. Phytochem Lett 9:78–81CrossRefGoogle Scholar
  192. Piao XL, Wu Q, Yang J, Park SY, Chen DJ, Liu HM (2013) Dammarane-type saponins from heat-processed Gynostemma pentaphyllum show fortified activity against A549 cells. Arch Pharm Res 36(7):874–879CrossRefPubMedGoogle Scholar
  193. Piao XL, Xing SF, Lou CX, Chen DJ (2014) Novel dammarane saponins from Gynostemma pentaphyllum and their cytotoxic activities against HepG2 cells. Bioorg Med Chem Lett 24(20):4831–4833CrossRefPubMedGoogle Scholar
  194. Piao T, Ma Z, Li X, Liu J (2015) Taraxasterol inhibits IL-1β-induced inflammatory response in human osteoarthritic chondrocytes. Eur J Pharmacol 756:38–42CrossRefPubMedGoogle Scholar
  195. Piao XM, Gao F, Zhu JX, Wang LJ, Zhao X, Li X, Sheng MM, Zhang Y (2018) Cucurbitacin B inhibits tumor angiogenesis by triggering the mitochondrial signaling pathway in endothelial cells. Int J Mol Med 42(2):1018–1025PubMedGoogle Scholar
  196. Pires VS, Taketa ATC, Gosmann G, Schenkel EP (2002) Saponins and sapogenins from Brachiaria decumbens Stapf. J Braz Chem Soc 13:135–139CrossRefGoogle Scholar
  197. Pitchai D, Roy A, Ignatius C (2014) In vitro evaluation of anticancer potentials of lupeol isolated from Elephantopus scaber L. on MCF-7 cell line. J Adv Pharm Technol Res 5:179–184CrossRefPubMedPubMedCentralGoogle Scholar
  198. Poolperm S, Jiraungkoorskul W (2017) An update review on the anthelmintic activity of bitter gourd, Momordica charantia. Pharmacogn Rev 11(21):31CrossRefPubMedPubMedCentralGoogle Scholar
  199. Poulev A, O'Neal JM, Logendra S, Pouleva RB, Timeva V, Garvey AS, Gleba D, Jenkins IS, Halpern BT, Kneer R, Cragg GM (2003) Elicitation, a new window into plant chemodiversity and phytochemical drug discovery. J Med Chem 46(12):2542–2547CrossRefPubMedGoogle Scholar
  200. Prasad A, Mathur A, Kalra A, Gupta MM, Lal RK, Mathur AK (2013) Fungal elicitor-mediated enhancement in growth and asiaticoside content of Centella asiatica L. shoot cultures. Plant Growth Regul 69(3):265–273CrossRefGoogle Scholar
  201. Praveen N, Thiruvengadam M, Yang YS, Kim SH, Murthy HN, Chung IM (2014) Production of gymnemic acid from hairy root cultures of Gymnema sylvestre R. Br. as influenced by polyunsaturated fatty acids (PUFAs) and their antioxidant activity. Ind Crop Prod 54:54–61CrossRefGoogle Scholar
  202. Preetha S, Kanniappan M, Selvakumar E, Nagaraj M, Varalakshmi P (2006) Lupeol ameliorates aflatoxin B1-induced peroxidative hepatic damage in rats. Comp Biochem Physiol, Part C: Toxicol Pharmacol 143:333–339Google Scholar
  203. Prokof'eva NG, Anisimov MM, Kiseleva MI, Rebachuk NM, Pokhilo ND (2002) Cytotoxic activity of dammarane triterpenoids from birch leaves. Biol Bull Russ Acad Sci 29(6):525–529CrossRefGoogle Scholar
  204. Radwan MM, El-Sebakhy NA, Asaad AM, Toaima SM, Kingston DGI (2004) Kahiricosides II–V, cycloartane glycosides from an Egyptian collection of Astragalus kahiricus. Phytochemistry 65:2909–2913CrossRefPubMedGoogle Scholar
  205. Rahimi S, Kim YJ, Devi BS, Oh JY, Kim SY, Kwon WS, Yang DC (2016) Sodium nitroprusside enhances the elicitation power of methyl jasmonate for ginsenoside production in Panax ginseng roots. Res Chem Intermed 42(4):2937–2951CrossRefGoogle Scholar
  206. Rahimi S, Kim J, Mijakovic I, Jung K, Choi G, Kim SC, Kim YJ (2019) Triterpenoid-biosynthetic UDP-glycosyltransferases from plants. Biotechnol Adv.  https://doi.org/10.1016/j.biotechadv.2019.04.016
  207. Rahuman AA, Venkatesan P (2008) Larvicidal efficacy of five cucurbitaceous plant leaf extracts against mosquito species. Parasitol Res 103(1):133CrossRefPubMedGoogle Scholar
  208. Raina K, Kumar D, Agarwal R (2016) Promise of bitter melon (Momordica charantia) bioactives in cancer prevention and therapy. Semin Cancer Biol 40:116–129CrossRefPubMedGoogle Scholar
  209. Ramalhete C, Mansoor TA, Mulhovo S, Molnár J, Ferreira MJ (2009) Cucurbitane-type triterpenoids from the African plant Momordica balsamina. J Nat Prod 72(11):2009–2013CrossRefPubMedGoogle Scholar
  210. Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M, Cusidó R, Palazon J (2016) Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 21(2):182CrossRefPubMedPubMedCentralGoogle Scholar
  211. Rao MS, Suresh G, Yadav PA, Prasad KR, Nayak VL, Ramakrishna S, Rao CV, Babu KS (2012) Novel apo-tirucallane triterpenoids from Walsura trifoliata. Tetrahedron Lett 53(46):6241–6244CrossRefGoogle Scholar
  212. Rastogi S, Pandey MM, Rawat AK (2015) Medicinal plants of the genus Betula—traditional uses and a phytochemical–pharmacological review. J Ethnopharmacol 159:62–83CrossRefPubMedGoogle Scholar
  213. Razboršek MI, Vončina DB, Doleček V, Vončina E (2008) Determination of oleanolic, betulinic and ursolic acid in Lamiaceae and mass spectral fragmentation of their trimethylsilylated derivatives. Chromatographia 67(5–6):433–440CrossRefGoogle Scholar
  214. Resende FA, de Andrade Barcala CA, da Silva Faria MC, Kato FH, Cunha WR, Tavares DC (2006) Antimutagenicity of ursolic acid and oleanolic acid against doxorubicin-induced clastogenesis in Balb/c mice. Life Sci 79(13):1268–1273CrossRefGoogle Scholar
  215. Reyes CP, Nunez MJ, Jiménez IA, Busserolles J, Alcaraz MJ, Bazzocchi IL (2006) Activity of lupane triterpenoids from Maytenus species as inhibitors of nitric oxide and prostaglandin E2. Bioorg Med Chem 14(5):1573–1579CrossRefPubMedGoogle Scholar
  216. Ríos JL, Manez S (2018) New pharmacological opportunities for betulinic acid. Planta Med 84(01):8–19CrossRefPubMedGoogle Scholar
  217. Roux D, Martin MT, Adeline MT, Sevenet T, Hadi AH, Paıs M (1998) Foveolins A and B, dammarane triterpenes from Aglaia foveolata. Phytochemistry 49(6):1745–1748CrossRefPubMedGoogle Scholar
  218. Seki H, Ohyama K, Sawai S, Mizutani M, Ohnishi T, Sudo H, Akashi T, Aoki T, Saito K, Muranaka T (2008) Licorice β-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin. Proc Natl Acad Sci 105(37):14204–14209CrossRefPubMedGoogle Scholar
  219. Seki H, Tamura K, Muranaka T (2015) P450s and UGTs: key players in the structural diversity of triterpenoid saponins. Plant Cell Physiol 56(8):1463–1471CrossRefPubMedGoogle Scholar
  220. Shabani L, Ehsanpour AA, Asghari G, Emami J (2009) Glycyrrhizin production by in vitro cultured Glycyrrhiza glabra elicited by methyl jasmonate and salicylic acid. Russ J Plant Physiol 56(5):621–626CrossRefGoogle Scholar
  221. Shakurova ÉR, Parfenova TI, Sufiyarova RS, Khalilova AZ, Akhmetova VR, Bashkatov SA (2008) Synthesis and anti-inflammatory activity of acyl derivatives of taraxasterol. Pharm Chem J 42(6):319CrossRefGoogle Scholar
  222. Shanmugam MK, Dai X, Kumar AP, Tan BK, Sethi G, Bishayee A (2013) Ursolic acid in cancer prevention and treatment: molecular targets, pharmacokinetics and clinical studies. Biochem Pharmacol 85(11):1579–1587CrossRefPubMedGoogle Scholar
  223. Shanmugam MK, Dai X, Kumar AP, Tan BK, Sethi G, Bishayee A (2014) Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: preclinical and clinical evidence. Cancer Lett 346(2):206–216CrossRefPubMedPubMedCentralGoogle Scholar
  224. Sharma P, Yadav S, Srivastava A, Shrivastava N (2013) Methyl jasmonate mediates upregulation of bacoside a production in shoot cultures of Bacopa monnieri. Biotechnol Lett 35(7):1121–1125CrossRefPubMedGoogle Scholar
  225. Shyu MH, Kao TC, Yen GC (2010) Oleanolic acid and ursolic acid induce apoptosis in HuH7 human hepatocellular carcinoma cells through a mitochondrial-dependent pathway and downregulation of XIAP. J Agric Food Chem 58(10):6110–6118CrossRefPubMedGoogle Scholar
  226. Sikander M, Hafeez BB, Malik S, Alsayari A, Halaweish FT, Yallapu MM, Chauhan SC, Jaggi M (2016) Cucurbitacin D exhibits potent anti-cancer activity in cervical cancer. Sci Rep 6:36594CrossRefPubMedPubMedCentralGoogle Scholar
  227. Singh R, Garcia-Gomez I, Gudehithlu KP, Singh AK (2017) Bitter melon extract promotes granulation tissue growth and angiogenesis in the diabetic wound. Adv Skin Wound Care 30(1):16–26CrossRefPubMedGoogle Scholar
  228. Somova LI, Shode FO, Mipando M (2004) Cardiotonic and antidysrhythmic effects of oleanolic and ursolic acids, methyl maslinate and uvaol. Phytomedicine 11(2–3):121–129CrossRefPubMedGoogle Scholar
  229. Sparg SG, Light ME, van Staden J (2004) Biological activities and distribution of plant saponins. J Ethnopharmacol 94:219–243CrossRefPubMedGoogle Scholar
  230. Srivastava P, Chaturvedi R (2010) Simultaneous determination and quantification of three pentacyclic triterpenoids—betulinic acid, oleanolic acid, and ursolic acid—in cell cultures of Lantana camara L. In Vitro Cell Dev Biol Plant 46:549–557CrossRefGoogle Scholar
  231. Stevenson PC, Green PW, Veitch NC, Farrell IW, Kusolwa P, Belmain SR (2016) Nor-hopanes from Zanha africana root bark with toxicity to bruchid beetles. Phytochemistry 123:25–32CrossRefPubMedGoogle Scholar
  232. Suhagia BN, Rathod IS, Sindhu S (2011) Sapindus mukorossi (Areetha): an overview. Int J Pharm Sci Res 2(8):1905Google Scholar
  233. Surh YJ, Na HK, Lee JY, Keum YS (2001) Molecular mechanisms underlying anti-tumor promoting activities of heat-processed Panax ginseng CA Meyer. J Korean Med Sci 16(Suppl):S38CrossRefPubMedPubMedCentralGoogle Scholar
  234. Suzuki YA, Murata Y, Inui H, Sugiura M, Nakano Y (2005) Triterpene glycosides of Siraitia grosvenori inhibit rat intestinal maltase and suppress the rise in blood glucose level after a single oral administration of maltose in rats. J Agric Food Chem 53(8):2941–2946CrossRefPubMedGoogle Scholar
  235. Szakiel A, Ruszkowski D, Janiszowska W (2005) Saponins in Calendula officinalis L.–structure, biosynthesis, transport and biological activity. Phytochem Rev 4(2–3):151–158CrossRefGoogle Scholar
  236. Szakiel A, Ruszkowski D, Grudniak A, Kurek A, Wolska KI, Doligalska M, Janiszowska W (2008) Antibacterial and antiparasitic activity of oleanolic acid and its glycosides isolated from marigold (Calendula officinalis). Planta Med 74(14):1709CrossRefPubMedGoogle Scholar
  237. Takasaki M, Konoshima T, Murata Y, Sugiura M, Nishino H, Tokuda H, Matsumoto K, Kasai R, Yamasaki K (2003) Anticarcinogenic activity of natural sweeteners, cucurbitane glycosides, from Momordica grosvenori. Cancer Lett 198(1):37–42CrossRefPubMedGoogle Scholar
  238. Tanaka R, Matsunaga S (1992) Saturated hopane and gammacerane triterpene-diols from the stem bark of Abies veitchii. Phytochemistry 31(10):3535–3539CrossRefGoogle Scholar
  239. Tansakul P, Shibuya M, Kushiro T, Ebizuka Y (2006) Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng. FEBS Lett 580(22):5143–5149CrossRefPubMedGoogle Scholar
  240. Tantry MA, Khan IA (2013) Saponins from Glycine max Merrill (soybean). Fitoterapia. 87:49–56CrossRefPubMedGoogle Scholar
  241. Tao W, Duan J, Zhao R, Li X, Yan H, Li J, Guo S, Yang N, Tang Y (2013) Comparison of three officinal Chinese pharmacopoeia species of Glycyrrhiza based on separation and quantification of triterpene saponins and chemometrics analysis. Food Chem 141:1681–1689CrossRefPubMedGoogle Scholar
  242. Tarapore RS, Siddiqui IA, Adhami VM, Spiegelman VS, Mukhtar H (2013) The dietary terpene lupeol targets colorectal cancer cells with constitutively active Wnt/β-catenin signaling. Mol Nutr Food Res 57(11):1950–1958CrossRefPubMedGoogle Scholar
  243. Tava A, Scotti C, Avato P (2011) Biosynthesis of saponins in the genus Medicago. Phytochem Rev 10(4):459–469CrossRefGoogle Scholar
  244. Tenea GN, Calin AL, Gavrila L, Cucu N (2008) Manipulation of root biomass and biosynthetic potential of Glycyrrhiza glabra L. plants by Agrobacterium rhizogenes mediated transformation. Rom Biotechnol Lett 13(5):3922–3932Google Scholar
  245. Teng R-W, Ni W, Hua Y, Chen C-X (2003) Two new tirucallanetype triterpenoid saponins from Sapindus mukorossi. Acta Bot Sin 45:369–372Google Scholar
  246. Teodoro T, Zhang L, Alexander T, Yue J, Vranic M, Volchuk A (2008) Oleanolic acid enhances insulin secretion in pancreatic β-cells. FEBS Lett 582(9):1375–1380CrossRefPubMedGoogle Scholar
  247. Tewari RK, Hahn EJ, Paek KY (2008) Modulation of copper toxicity-induced oxidative damage by nitric oxide supply in the adventitious roots of Panax ginseng. Plant Cell Rep 27(1):171–181CrossRefPubMedGoogle Scholar
  248. Theo A, Masebe T, Suzuki Y, Kikuchi H, Wada S, Obi CL, Bessong PO, Usuzawa M, Oshima Y, Hattori T (2009) Peltophorum africanum, a traditional South African medicinal plant, contains an anti HIV-1 constituent, betulinic acid. Tohoku J Exp Med 217:93–99CrossRefPubMedGoogle Scholar
  249. Tiwari P, Mishra BN, Sangwan NS (2014) Phytochemical and pharmacological properties of Gymnema sylvestre: an important medicinal plant. Biomed Res Int 830285:1–18Google Scholar
  250. Topçu G (2006) Bioactive triterpenoids from Salvia species. J Nat Prod 69(3):482–487CrossRefPubMedGoogle Scholar
  251. Ukiya M, Akihisa T, Tokuda H, Toriumi M, Mukainaka T, Banno N, Kimura Y, Hasegawa JI, Nishino H (2002a) Inhibitory effects of cucurbitane glycosides and other triterpenoids from the fruit of Momordica grosvenori on epstein− barr virus early antigen induced by tumor promoter 12-O-tetradecanoylphorbol-13-acetate. J Agric Food Chem 50(23):6710–6715CrossRefPubMedGoogle Scholar
  252. Ukiya M, Akihisa T, Yasukawa K, Tokuda H, Toriumi M, Koike K, Kimura Y, Nikaido T, Aoi W, Nishino H, Takido M (2002b) Anti-inflammatory and anti-tumor-promoting effects of cucurbitane glycosides from the roots of Bryonia dioica. J Nat Prod 65(2):179–183CrossRefPubMedGoogle Scholar
  253. Upadhyay A, Singh DK (2012) Pharmacological effects of Sapindus mukorossi. Rev Inst Med Trop Sao Paulo 54(5):273–280CrossRefPubMedGoogle Scholar
  254. Vasconcelos MA, Royo VA, Ferreira DS, Crotti AE, e Silva ML, Carvalho JC, Bastos JK, Cunha WR (2006) In vivo analgesic and anti-inflammatory activities of ursolic acid and oleanoic acid from Miconia albicans (Melastomataceae). Z Naturforsch C 61(7–8):477–482CrossRefPubMedGoogle Scholar
  255. Veerashree V, Anuradha CM, Kumar V (2012) Elicitor-enhanced production of gymnemic acid in cell suspension cultures of Gymnema sylvestre R. Br. Plant Cell Tissue Organ Cult 108(1):27–35CrossRefGoogle Scholar
  256. Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1(1):13–25CrossRefGoogle Scholar
  257. Viji V, Shobha B, Kavitha SK, Ratheesh M, Kripa K, Helen A (2010) Betulinic acid isolated from Bacopa monniera (L.) Wettst suppresses lipopolysaccharide stimulated interleukin-6 production through modulation of nuclear factor-κB in peripheral blood mononuclear cells. Int Immunopharmacol 10(8):843–849CrossRefPubMedGoogle Scholar
  258. Vincken JP, Heng L, de Groot A, Gruppen H (2007) Saponins, classification and occurrence in the plant kingdom. Phytochemistry 68(3):275–297CrossRefPubMedGoogle Scholar
  259. Vinh LB, Lee Y, Han YK, Kang JS, Park JU, Kim YR, Yang SY, Kim YH (2017) Two new dammarane-type triterpene saponins from Korean red ginseng and their anti-inflammatory effects. Bioorg Med Chem Lett 27(23):5149–5153CrossRefPubMedGoogle Scholar
  260. Wang F, Li YM (2010) New hopane triterpene from Dicranostigma leptopodum (Maxim) Fedde: note. J Asian Nat Prod Res 12(1):94–97CrossRefPubMedGoogle Scholar
  261. Wang J, Zhao Q (2019) Betulinic acid inhibits cell proliferation, migration, and inflammatory response in rheumatoid arthritis fibroblast-like synoviocytes. J Cell Biochem 120(2):2151–2158CrossRefGoogle Scholar
  262. Wang W, Ali Z, Shen Y, Li XC, Khan IA (2010a) Ursane triterpenoids from the bark of Terminalia arjuna. Fitoterapia 81(6):480–484CrossRefPubMedGoogle Scholar
  263. Wang ZH, Hsu CC, Huang CN, Yin MC (2010b) Anti-glycative effects of oleanolic acid and ursolic acid in kidney of diabetic mice. Eur J Pharmacol 628(1–3):255–260CrossRefPubMedGoogle Scholar
  264. Wang JS, Zhang Y, Wei DD, Wang XB, Luo J, Kong LY (2011) Novel tirucallane-type triterpenoids from Aphanamixis grandifolia. Chem Biodivers 8(11):2025–2034CrossRefPubMedGoogle Scholar
  265. Wang H, Li MY, Wu J (2012) Chemical constituents and some biological activities of plants from the genus Ceriops. Chem Biodivers 9(1):1–1CrossRefPubMedGoogle Scholar
  266. Wang J, Gao W, Zuo B, Zhang L, Huang L (2013) Effect of methyl jasmonate on the ginsenoside content of Panax ginseng adventitious root cultures and on the genes involved in triterpene biosynthesis. Res Chem Intermed 39:1973–1980CrossRefGoogle Scholar
  267. Wang W, Yang H, Li Y, Zheng Z, Liu Y, Wang H, Mu Y, Yao Q (2018) Identification of 16, 25-O-diacetyl-cucurbitane F and 25-O-acetyl-23, 24-dihydrocucurbitacin F as novel anti-cancer chemicals. R Soc Open Sci 5(8):180723CrossRefPubMedPubMedCentralGoogle Scholar
  268. Wei W, Wang P, Wei Y, Liu Q, Yang C, Zhao G, Yue J, Yan X, Zhou Z (2015) Characterization of Panax ginseng UDP-glycosyltransferases catalyzing protopanaxatriol and biosyntheses of bioactive ginsenosides F1 and Rh1 in metabolically engineered yeasts. Mol Plant 8(9):1412–1424CrossRefPubMedGoogle Scholar
  269. Wendt KU (2005) Enzyme mechanisms for triterpene cyclization: new pieces of the puzzle. Angew Chem Int Ed 44:3966–3971CrossRefGoogle Scholar
  270. Weng JR, Bai LY, Chiu CF, Hu JL, Chiu SJ, Wu CY (2013) Cucurbitane triterpenoid from Momordica charantia induces apoptosis and autophagy in breast cancer cells, in part, through peroxisome proliferator-activated receptor γ activation. Evid Based Complement Alternat Med 935675:1–12Google Scholar
  271. Wiktorowska E, Długosz, Janiszowska W (2010) Significant enhancement of oleanolic acid accumulation by biotic elicitors in cell suspension cultures of Calendula officinalis L. Enzym Microb Technol 46:14–20CrossRefGoogle Scholar
  272. Wolska KI, Grudniak AM, Fiecek B, Kraczkiewicz-Dowjat A, Kurek A (2010) Antibacterial activity of oleanolic and ursolic acids and their derivatives. Cent Eur J Biol 5(5):543–553Google Scholar
  273. Xiong H, Cheng Y, Zhang X, Zhang X (2014) Effects of taraxasterol on iNOS and COX-2 expression in LPS-induced RAW 264.7 macrophages. J Ethnopharmacol 155(1):753–757CrossRefPubMedGoogle Scholar
  274. Xu R, Fazio GC, Matsuda SP (2004) On the origins of triterpenoid skeletal diversity. Phytochemistry 65(3):261–291CrossRefPubMedGoogle Scholar
  275. Xu M, Wang D, Zhang YJ, Yang CR (2007) Dammarane triterpenoids from the roots of Gentiana rigescens. J Nat Prod 70(5):880–883CrossRefPubMedGoogle Scholar
  276. Xu J, Xiao D, Lin QH, He JF, Liu WY, Xie N, Feng F, Qu W (2016) Cytotoxic tirucallane and apotirucallane triterpenoids from the stems of Picrasma quassioides. J Nat Prod 79(8):1899–1910CrossRefPubMedGoogle Scholar
  277. Yamashita H, Masuda K, Kobayashi T, Ageta H, Shiojima K (1998) Dammarane triterpenoids from rhizomes of Pyrrosia lingua. Phytochemistry 49(8):2461–2466CrossRefGoogle Scholar
  278. Yan HJ, Wang JS, Kong LY (2014) Cytotoxic dammarane-type triterpenoids from the stem bark of Dysoxylum binecteriferum. J Nat Prod 77(2):234–242CrossRefPubMedGoogle Scholar
  279. Yang SM, Song QS, Qing C, Wu DG, Liu XK (2006) Anticancer activity of tirucallane triterpenoids from Amoora dasyclada. Z Naturforsch C 61(3–4):193–195CrossRefPubMedGoogle Scholar
  280. Yang L, Chen Y, Ma Q, Fang J, He J, Cheng Y et al (2010) Effect of betulinic acid on the regulation of Hiwi and cyclin B1 in human gastric adenocarcinoma AGS cells. Acta Pharmacol Sin 31:66–72CrossRefPubMedGoogle Scholar
  281. Yang H, Kim HW, Kim YC, Sung SH (2017a) Cytotoxic activities of naturally occurring oleanane-, ursane-, and lupane-type triterpenes on HepG2 and AGS cells. Pharmacogn Mag 13(49):118CrossRefPubMedPubMedCentralGoogle Scholar
  282. Yang T, Liu J, Yang M, Huang N, Zhong Y, Zeng T, Wei R, Wu Z, Xiao C, Cao X, Li M (2017b) Cucurbitacin B exerts anti-cancer activities in human multiple myeloma cells in vitro and in vivo by modulating multiple cellular pathways. Oncotarget 8(4):5800PubMedGoogle Scholar
  283. Yang J, Ren J, Wang A (2018) Isolation, characterization, and hepatoprotective activities of terpenes from the gum resin of Boswellia carterii Birdw. Phytochem Lett 23:73–77CrossRefGoogle Scholar
  284. Ye W, Liu X, Zhang Q, Che CT, Zhao S (2001) Antisweet saponins from Gymnema sylvestre. J Nat Prod 64(2):232–235CrossRefPubMedGoogle Scholar
  285. Yi J, Xia W, Wu J, Yuan L, Wu J, Tu D et al (2014) Betulinic acid prevents alcohol-induced liver damage by improving the antioxidant system in mice. J Vet Sci 15:141–148CrossRefPubMedPubMedCentralGoogle Scholar
  286. Yin MC, Chan KC (2007) Nonenzymatic antioxidative and antiglycative effects of oleanolic acid and ursolic acid. J Agric Food Chem 55(17):7177–7181CrossRefPubMedGoogle Scholar
  287. Yin J, Ren CL, Zhan YG, Li CX, Xiao JL, Qiu W, Li XY, Peng HM (2012) Distribution and expression characteristics of triterpenoids and OSC genes in white birch (Betula platyphylla suk.). Mol Biol Rep 39(3):2321–2328CrossRefPubMedGoogle Scholar
  288. Yook CS, Liu XQ, Chang SY, Park SY, Nohara T (2002) Lupane-type glycosides from the leaves of Acanthopanax gracilistylus. Chem Pharm Bull 50:1383–1385CrossRefPubMedGoogle Scholar
  289. Yoshikawa M, Morikawa T, Yamamoto K, Kato Y, Nagatomo A, Matsuda H (2005) Floratheasaponins A− C, acylated oleanane-type triterpene oligoglycosides with anti-hyperlipidemic activities from flowers of the tea plant (Camellia sinensis). J Nat Prod 68(9):1360–1365CrossRefPubMedGoogle Scholar
  290. Yu KW, Murthy HN, Jeong CS, Hahn EJ, Paek KY (2005) Organic germanium stimulates the growth of ginseng adventitious roots and ginsenoside production. Process Biochem 40(9):2959–2961CrossRefGoogle Scholar
  291. Yu Y, Zhang WB, Li XY, Piao XC, Jiang J, Lian ML (2016) Pathogenic fungal elicitors enhance ginsenoside biosynthesis of adventitious roots in Panax quinquefolius during bioreactor culture. Ind Crop Prod 94:729–735CrossRefGoogle Scholar
  292. Yuan CS, Wang CZ, Wicks SM, Qi LW (2010) Chemical and pharmacological studies of saponins with a focus on American ginseng. J Ginseng Res 34(3):160CrossRefPubMedPubMedCentralGoogle Scholar
  293. Zha QB, Zhang XY, Lin QR, Xu LH, Zhao GX, Pan H, Zhou D, Ouyang DY, Liu ZH, He XH (2015) Cucurbitacin E induces autophagy via downregulating mTORC1 signaling and upregulating AMPK activity. PLoS One 10(5):e0124355CrossRefPubMedPubMedCentralGoogle Scholar
  294. Zhang W, Popovich D (2009) Chemical and biological characterization of oleanane triterpenoids from soy. Molecules 14(8):2959–2975CrossRefPubMedPubMedCentralGoogle Scholar
  295. Zhang XY, Li Y, Wang YY, Cai XH, Feng T, Luo XD (2010a) Tirucallane-type alkaloids from the bark of Dysoxylum laxiracemosum. J Nat Prod 73(8):1385–1388CrossRefPubMedGoogle Scholar
  296. Zhang Y, Wang J, Wei D, Wang X, Luo J, Luo J, Kong L (2010b) Cytotoxic tirucallane C 26 triterpenoids from the stem barks of Aphanamixis grandifolia. Phytochemistry 71(17):2199–2204CrossRefPubMedGoogle Scholar
  297. Zhang X, Xiong H, Liu L (2012a) Effects of taraxasterol on inflammatory responses in lipopolysaccharide-induced RAW 264.7 macrophages. J Ethnopharmacol 141(1):206–211CrossRefPubMedGoogle Scholar
  298. Zhang Y, Tang CP, Ke CQ, Li XQ, Xie H, Ye Y (2012b) Limonoids from the fruits of Melia toosendan. Phytochemistry 73:106–113CrossRefPubMedGoogle Scholar
  299. Zhang Y, Wang J, Wang P, Kong L (2012c) Two new tirucallane-type triterpenoids from the stem barks of Aphanamixis grandifolia and their cytotoxic activities. Chin J Chem 30(6):1356–1360CrossRefGoogle Scholar
  300. Zhang D, Chen W, Chen W, Song X, Han C, Wang Y, Chen G (2013a) Three new ursane-type triterpenoids from the stems of Saprosma merrillii. Molecules 18(12):14496–14504CrossRefPubMedPubMedCentralGoogle Scholar
  301. Zhang XS, Bi XL, Cao JQ, Xia XC, Diao YP, Zhao YQ (2013b) Protein tyrosine phosphatase 1B inhibitory effect by dammarane-type triterpenes from hydrolyzate of total Gynostemma pentaphyllum saponins. Bioorg Med Chem Lett 23(1):297–300CrossRefPubMedGoogle Scholar
  302. Zhang Y, Wang JS, Wei DD, Gu YC, Wang XB, Kong LY (2013c) Bioactive terpenoids from the fruits of Aphanamixis grandifolia. J Nat Prod 76(6):1191–1195CrossRefPubMedGoogle Scholar
  303. Zhang LJ, Huang HT, Liaw CC, Huang SY, Lin ZH, Kuo YH (2016a) Cucurbitane-type triterpenes and glycoside from the rattan of wild Momordica charantia and their anti-inflammatory and cytotoxic activities. Planta Med 82(S 01):P517Google Scholar
  304. Zhang Y, Zhang Z, Wang H, Cai N, Zhou S, Zhao Y, Chen X, Zheng S, Si Q, Zhang W (2016b) Neuroprotective effect of ginsenoside Rg1 prevents cognitive impairment induced by isoflurane anesthesia in aged rats via antioxidant, anti-inflammatory and anti-apoptotic effects mediated by the PI3K/AKT/GSK-3β pathway. Mol Med Rep 14(3):2778–2784CrossRefPubMedGoogle Scholar
  305. Zhang X, Shi G, Liu M, Chen R, Wu X, Zhao Y (2018) Four new dammarane-type triterpenes derivatives from hydrolyzate of total Gynostemma pentaphyllum saponins and their bioactivities. Nat Prod Res 24:1–7Google Scholar
  306. Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23(4):283–333CrossRefPubMedGoogle Scholar
  307. Zhao M, Zhang S, Fu L, Li N, Bai J, Sakai J, Wang L, Tang W, Hasegawa T, Ogura H, Kataoka T (2006) Taraxasterane-and ursane-type triterpenes from Nerium oleander and their biological activities. J Nat Prod 69(8):1164–1167CrossRefPubMedGoogle Scholar
  308. Zhao S, Wang L, Liu L, Liang Y, Sun Y, Wu J (2014) Both the mevalonate and the non-mevalonate pathways are involved in ginsenoside biosynthesis. Plant Cell Rep 33(3):393–400CrossRefPubMedGoogle Scholar
  309. Zheng YF, Qi LW, Cui XB, Peng GP, Peng YB, Ren MT, Cheng XL, Li P (2010) Oleanane-type triterpene glucuronides from the roots of Glycyrrhiza uralensis Fischer. Planta Med 76(13):1457–1463CrossRefPubMedGoogle Scholar
  310. Zhu N, Sun Z, Hu M, Li Y, Zhang D, Wu H, Tian Y, Li P, Yang J, Ma G, Xu X (2018) Cucurbitane-type triterpenes from the tubers of Hemsleya penxianensis and their bioactive activity. Phytochemistry 147:49–56CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of LucknowLucknowIndia
  2. 2.Institute for Development of Advanced Computing, ONGC Centre for Advanced StudiesUniversity of LucknowLucknowIndia

Personalised recommendations