, Volume 256, Issue 2, pp 293–312 | Cite as

Evolution of light-independent protochlorophyllide oxidoreductase

  • Pratishtha Vedalankar
  • Baishnab C. TripathyEmail author
Review Article


The nonhomologous enzymes, the light-independent protochlorophyllide reductase (DPOR) and the light-dependent protochlorophyllide oxidoreductase (LPOR), catalyze the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide) in the penultimate step of biosynthesis of chlorophyll (Chl) required for photosynthetic light absorption and energy conversion. The two enzymes differ with respect to the requirement of light for catalysis and oxygen sensitivity. DPOR and LPOR initially evolved in the ancestral prokaryotic genome perhaps at different times. DPOR originated in the anoxygenic environment of the Earth from nitrogenase-like enzyme of methanogenic archaea. Due to the transition from anoxygenic to oxygenic photosynthesis in the prokaryote, the DPOR was mostly inactivated in the daytime by photosynthetic O2 leading to the evolution of oxygen-insensitive LPOR that could function in the light. The primary endosymbiotic event transferred the DPOR and LPOR genes to the eukaryotic phototroph; the DPOR remained in the genome of the ancestor that turned into the plastid, whereas LPOR was transferred to the host nuclear genome. From an evolutionary point of view, several compelling theories that explain the disappearance of DPOR from several species cutting across different phyla are as follows: (i) pressure of the oxygenic environment; (ii) change in the light conditions and temperature; and (iii) lineage-specific gene losses, RNA editing, and nonsynonymous substitution. Certain primary amino acid sequence and the physiochemical properties of the ChlL subunit of DPOR have similarity with that of LPOR suggesting a convergence of these two enzymes in certain evolutionary event. The newly obtained sequence data from different phototrophs will further enhance the width of the phylogenetic information on DPOR.


Chlorophyll biosynthesis Chlorophyllide a reductase Endosymbiosis Light-dependent protochlorophyllide oxidoreductase Light-independent protochlorophyllide reductase Nitrogenase Oxygenic photosynthesis 











Chlorophyllide a reductase


Light-independent protochlorophyllide reductase


Light- dependent protochlorophyllide oxidoreductase





The authors wish to thank Professor Govindjee, University of Illinois, Urbana, USA, for critical reading of the manuscript.

Funding information

Financial assistance from DST (grant no. EMR/2016/004976), UGC resource networking, DST-PURSE and DST-FIST to BCT is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Adamson HY, Hiller RG, Walmsley J (1997) Protochlorophyllide reduction and greening in angiosperms: an evolutionary perspective. J Photochem Photobiol B Biol 41:201–221CrossRefGoogle Scholar
  2. Archibald JM (2009) The puzzle of plastid evolution. Curr Biol 19:R81–R88PubMedCrossRefGoogle Scholar
  3. Archibald JM (2015) Genomic perspectives on the birth and spread of plastids. Proc Natl Acad Sci U S A 112:10147–10153PubMedPubMedCentralCrossRefGoogle Scholar
  4. Armstrong GA (1998) Greening in the dark: light independent protochlorophyllide biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. J Photochem Photobiol B Biol 43:87–100CrossRefGoogle Scholar
  5. Artz JH, Zadvornyy OA, Mulder DW, King PW, Peters JW (2017) Structural characterization of poised states in the oxygen sensitive hydrogenases and nitrogenases. Methods Enzymol 595:213–259PubMedCrossRefGoogle Scholar
  6. Beale SI (1999) Enzyme of chlorophyll biosynthesis. Photosynth Res 60:43–73CrossRefGoogle Scholar
  7. Berman-Frank I, Lundgren P, Chen YB, Küpper H, Kolber Z, Bergman B, Falkowski P (2001) Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294(5546):1534–1537PubMedCrossRefGoogle Scholar
  8. Berman-Frank I, Lundgren P, Falkowski P (2003) Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 154(3):157–164PubMedCrossRefGoogle Scholar
  9. Biswal AK, Pattanayak GK, Pandey SS, Leelavathi S, Reddy VS, Govindjee, Tripathy BC (2012) Light intensity-dependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide a oxygenase (CAO) in tobacco. Plant Physiol 112Google Scholar
  10. Björn LO (2018) Photoenzymes and related topics: an update. Photochem Photobiol 94:459–465PubMedCrossRefGoogle Scholar
  11. Björn LO, Govindjee (2009) The evolution of photosynthesis and chloroplasts. Curr Sci:1466–1474Google Scholar
  12. Blankenship RE (2010) Early evolution of photosynthesis. Plant Physiol 154:434–438PubMedPubMedCentralCrossRefGoogle Scholar
  13. Blankenship RE, Hartman H (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 23:94–97PubMedCrossRefGoogle Scholar
  14. Bock R (2010) The give-and-take of DNA: horizontal gene transfer in plants. Trends Plant Sci 15:11–22PubMedCrossRefGoogle Scholar
  15. Boivin R, Richard M, Beauseigle D, Bousquet J, Bellemare G (1996) Phylogenetic inferences from chloroplast chlB gene sequences of Nephrolepis exaltata (Filicopsida), Ephedra altissima (Gnetopsida), and diverse land plants. Mol Phylogenet Evol 6:19–29PubMedCrossRefGoogle Scholar
  16. Bollivar DW (2006) Recent advances in chlorophyll biosynthesis. Photosynth Res 90:173–194PubMedCrossRefGoogle Scholar
  17. Bordowitz JR, Montgomery BL (2008) Photoregulation of cellular morphology during complementary chromatic adaptation requires sensor-kinase-class protein RcaE in Fremyella diplosiphon. J Bacteriol 190:4069–4074PubMedPubMedCentralCrossRefGoogle Scholar
  18. Boyd E, Peters JW (2013) New insights into the evolutionary history of biological nitrogen fixation. Front Microbiol 4:201PubMedPubMedCentralGoogle Scholar
  19. Breznenová K, Demko V, Pavlovič A, Gálová E, Balážová R, Hudák J (2010) Light-independent accumulation of essential chlorophyll biosynthesis- and photosynthesis-related proteins in Pinus mugo and Pinus sylvestris seedlings. Photosynthetica 48:16–22CrossRefGoogle Scholar
  20. Brinkhoff T, Buchholz I, Bunk B, Cypionka H, Daniel R, Drepper T, Gerdts G, Hahnke S (2010) The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker’s guide to life in the sea. ISME J 4:61–77PubMedCrossRefGoogle Scholar
  21. Bröcker MJ, Virus S, Ganskow S, Heathcote P, Heinz DW, Schubert WD, Jahn D, Moser J (2008) ATP-driven reduction by dark-operative protochlorophyllide oxidoreductase from Chlorobium tepidum mechanistically resembles nitrogenase catalysis. J Biol Chem 283:10559–10567Google Scholar
  22. Bröcker MJ, Schomburg S, Heinz DW, Jahn D, Schubert W-D, Moser J (2010) Crystal structure of the nitrogenase-like dark operative protochlorophyllide oxidoreductase catalytic complex (ChlN/ChlB)2. J Biol Chem 285:27336–27345PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bryant DA, Frigaard NU (2006) Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 14:488–496PubMedCrossRefGoogle Scholar
  24. Brzezowski P, Richter AS, Grimm B (2015) Regulation and function of tetrapyrrole biosynthesis in plants and algae. Biochim Biophys Acta Bioenerg 1847:968–985CrossRefGoogle Scholar
  25. Buick R (2008) When did oxygenic photosynthesis evolve? Philos Trans R Soc Lond B Biol Sci 363:2731–2743PubMedPubMedCentralCrossRefGoogle Scholar
  26. Burke DH, Alberti M, Hearst JE (1993a) bchFNBH bacteriochlorophyll synthesis genes of Rhodobacter capsulatus and identification of the third subunit of light-independent protochlorophyllide reductase in bacteria and plants. J Bacteriol 175:2414–2422PubMedPubMedCentralCrossRefGoogle Scholar
  27. Burke DH, Hearst JE, Sidow A (1993b) Early evolution of photosynthesis: clues from nitrogenase and chlorophyll iron proteins. Proc Natl Acad Sci USA 90(15):7134–7138PubMedCrossRefGoogle Scholar
  28. Burke DH, Raubeson LA, Alberti M, Hearst JE, Jordan ET, Kirch SA, Valinski AEC, Conant DS, Stein DB (1993c) The chlL (frxC) gene: phylogenetic distribution in vascular plants and DNA sequence from Polystichum acrostichoides (Pteridophyta) and Synechococcus sp. 7002 (Cyanobacteria). Plant Syst Evol 187:89–102CrossRefGoogle Scholar
  29. Cahoon AB, Timko MP (2000) Yellow-in-the-dark mutants of Chlamydomonas lack the CHIL subunit of light-independent protochlorophyllide reductase. Plant Cell 12:559–568PubMedPubMedCentralCrossRefGoogle Scholar
  30. Carey EE, Tripathy BC, Rebeiz CA (1985) Chloroplast biogenesis 51: modulation of monovinyl and divinyl protochlorophyllide biosynthesis by light and darkness in vitro. Plant Physiol 79:1059–1063PubMedPubMedCentralCrossRefGoogle Scholar
  31. Castandet B, Araya A (2011) RNA editing in plant organelles. Why make it easy? Biochem Mosc 76:924–931CrossRefGoogle Scholar
  32. Castelfranco PA, Beale SI (1983) Chlorophyll biosynthesis: recent advances and areas of current interest. Annu Rev Plant Physiol 34:241–276CrossRefGoogle Scholar
  33. Chen M (2014) Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Annu Rev Biochem 83:317–340PubMedCrossRefGoogle Scholar
  34. Cheng Q, Day A, Dowson-Day M, Shen GF, Dixon R (2005) The Klebsiella pneumoniae nitrogenase Fe protein gene (nifH) functionally substitutes for the chlL gene in Chlamydomonas reinhardtii. Biochem Biophys Res Commun 329:966–975PubMedCrossRefGoogle Scholar
  35. Chew AGM, Bryant DA (2007) Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity. Annu Rev Microbiol 61:113–129PubMedCrossRefGoogle Scholar
  36. Choquet Y, Rahire M, Girard Bascou J, Erickson J, Rochaix JD (1992) A chloroplast gene is required for the light independent accumulation of chlorophyll in Chlamydomonas reinhardtii. EMBO J 11:1697–1704PubMedPubMedCentralCrossRefGoogle Scholar
  37. Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, Arias MC, Ball SG, Gile GH, Hirakawa Y, Hopkins JF (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492:59–65PubMedCrossRefGoogle Scholar
  38. del Pozo JC, Ramirez-Parra E (2015) Whole genome duplications in plants: an overview from Arabidopsis. J Exp Bot 66:6991–7003PubMedCrossRefGoogle Scholar
  39. Demko V, Pavlovič A, Valková D, Grimm B, Hudák J (2009) A novel insight into the regulation of light-independent chlorophyll biosynthesis in Larix decidua and Picea abies seedlings. Planta 230:165–176PubMedCrossRefGoogle Scholar
  40. Duggan JX, Rebeiz CA (1982) Chloroplast biogenesis 42: conversion of divinyl chlorophyllide a to monovinyl chlorophyllide a in vivo and in vitro. Plant Sci Lett 27:137–145CrossRefGoogle Scholar
  41. Dutta S, Mohanty S, Tripathy BC (2009) Role of temperature stress on chloroplast biogenesis and protein import in pea. Plant Physiol 150:1050–1061PubMedPubMedCentralCrossRefGoogle Scholar
  42. Espineda CE, Linford AS, Devine D, Brusslan JA (1999) The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 96:10507–10511PubMedPubMedCentralCrossRefGoogle Scholar
  43. Esteves-Ferreira AA, Cavalcanti JH, Vaz MG, Alvarenga LV, Nunes-Nesi A, Araújo WL (2017) Cyanobacterial nitrogenases: phylogenetic diversity, regulation and functional predictions. Genet Mol Biol 40(1):261–275PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fang L, Ge H, Huang X, Liu Y, Lu M, Wang J, Chen W, Xu W, Wang Y (2017) Trophic mode-dependent proteomic analysis reveals functional significance of light-independent chlorophyll synthesis in Synechocystis sp. PCC6803. Mol Plant 10:73–85PubMedCrossRefGoogle Scholar
  45. Fani R, Gallo R, Lio P (2000) Molecular evolution of nitrogen fixation: the evolutionary history of the nifD, nifK, nifE, and nifN genes. J Mol Evol 51(1):1–1PubMedCrossRefGoogle Scholar
  46. Fong A, Archibald JM (2008) Evolutionary dynamics of light-independent protochlorophyllide oxidoreductase genes in the secondary plastids of cryptophyte algae. Eukaryot Cell 7:550–553PubMedPubMedCentralCrossRefGoogle Scholar
  47. Fujita Y (1996) Protochlorophyllide reduction: a key step in the greening of plants. Plant Cell Physiol 37:411–421PubMedCrossRefGoogle Scholar
  48. Fujita Y, Bauer CE (2000) Reconstitution of light-independent protochlorophyllide reductase from purified bacteriochlorophyll and BchN-BchB subunits in vitro confirmation of nitrogenase-like features of a bacteriochlorophyll biosynthesis enzyme. J Biol Chem 275:23583–23588PubMedCrossRefGoogle Scholar
  49. Fujita Y, Yamakawa H (2017) Biochemistry of chlorophyll biosynthesis in photosynthetic prokaryotes. In: Modern topics in the phototrophic prokaryotes. Springer, Cham, pp 67–122CrossRefGoogle Scholar
  50. Fujita Y, Takahashi Y, Kohchi T, Ozeki H, Ohyama K, Matsubara H (1989) Identification of a novel nifH-like (frxC) protein in chloroplasts of the liverwort Marchantia polymorpha. Plant Mol Biol 13:551–556PubMedCrossRefGoogle Scholar
  51. Fujita Y, Takahashi Y, Chuganji M, Matsubara H (1992) The nifH-like (frxC) gene is involved in the biosynthesis of chlorophyll in the filamentous cyanobacterium Plectonema boryanum. Plant Cell Physiol 33:81–92Google Scholar
  52. Fujita Y, Matsumoto H, Takahashi Y, Matsubara H (1993) Identification of a nifDK-like gene (ORF467) involved in the biosynthesis of chlorophyll in the cyanobacterium Plectonema boryanum. Plant Cell Physiol 34:305–314PubMedGoogle Scholar
  53. Fujita Y, Takagi H, Hase T (1996) Identification of the chlB gene and the gene product essential for the light-independent chlorophyll biosynthesis in the cyanobacterium Plectonema boryanum. Plant Cell Physiol 37:313–323PubMedCrossRefGoogle Scholar
  54. Fujita Y, Takagi H, Hase T (1998) Cloning of the gene encoding a protochlorophyllide reductase: the physiological significance of the co-existence of light-dependent and -independent protochlorophyllide reduction systems in the cyanobacterium Plectonema boryanum. Plant Cell Physiol 39:177–185PubMedCrossRefGoogle Scholar
  55. Fujita Y, Tsujimoto R, Aoki R (2015) Evolutionary aspects and regulation of tetrapyrrole biosynthesis in cyanobacteria under aerobic and anaerobic environments. Life 5:1172–1203PubMedPubMedCentralCrossRefGoogle Scholar
  56. Gabruk M, Mysliwa-Kurdziel B (2015) Light-dependent protochlorophyllide oxidoreductase: phylogeny, regulation, and catalytic properties. Biochemistry 54:5255–5262PubMedCrossRefGoogle Scholar
  57. Gabruk M, Grzyb J, Kruk J, Mysliwa-Kurdziel B (2012) Light-dependent and light-independent protochlorophyllide oxidoreductases share similar sequence motifs in silico studies. Photosynthetica 50:529–540CrossRefGoogle Scholar
  58. Grimm B, Porra RJ, Rüdiger W, Scheer H, Melkozernov AN, Blankenship RE (2006) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Advances in photosynthesis and respiration. Springer, Dordrecht, pp 397–412Google Scholar
  59. Grossman AR (2003) A molecular understanding of complementary chromatic adaptation. Photosynth Res 76:207–215PubMedCrossRefGoogle Scholar
  60. Gupta RS (2012) Origin and spread of photosynthesis based upon conserved sequence features in key bacteriochlorophyll biosynthesis proteins. Mol Biol Evol 29:3397–3412PubMedCrossRefGoogle Scholar
  61. Gupta RS, Khadka B (2016) Evidence for the presence of key chlorophyll-biosynthesis-related proteins in the genus Rubrobacter (phylum Actinobacteria) and its implications for the evolution and origin of photosynthesis. Photosynth Res 127:201–218PubMedCrossRefGoogle Scholar
  62. Ha JH, Han SH, Lee HJ, Park CM (2017) Environmental adaptation of the heterotrophic-to-autotrophic transition: the developmental plasticity of seedling establishment. Crit Rev Plant Sci 36:128–137CrossRefGoogle Scholar
  63. Hirose Y, Rockwell NC, Nishiyama K, Narikawa R, Ukaji Y, Inomata K, Lagarias JC, Ikeuchi M (2013) Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle. Proc Natl Acad Sci U S A 110:4974–4979PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hirose Y, Katayama M, Ohtsubo Y, Misawa N, Iioka E, Suda W, Oshima K, Hanaoka M, Tanaka K, Eki T, Ikeuchi M (2015) Complete genome sequence of cyanobacterium Geminocystis sp. strain NIES-3708, which performs type II complementary chromatic acclimation. Genome Announc 3:357–315Google Scholar
  65. Ho MY, Shen G, Canniffe DP, Zhao C, Bryant DA (2016) Light dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. Science 353:9178CrossRefGoogle Scholar
  66. Hohmann-Marriott MF, Blankenship RE (2011) Evolution of photosynthesis. Annu Rev Plant Biol 62:515–548PubMedCrossRefGoogle Scholar
  67. Hunsperger HM, Randhawa T, Cattolico RA (2015) Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae. BMC Evol Biol 15:16PubMedPubMedCentralCrossRefGoogle Scholar
  68. Ito H, Yokono M, Tanaka R, Tanaka A (2008) Identification of a novel vinyl reductase gene essential for the biosynthesis of monovinyl chlorophyll in Synechocystis sp. PCC6803. J Biol Chem 283:9002–9011PubMedCrossRefGoogle Scholar
  69. Janouškovec J, Liu SL, Martone PT, Carré W, Leblanc C, Collén J, Keeling PJ (2013) Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers. PLoS One 8:59001CrossRefGoogle Scholar
  70. Johnson JL, Indermaur LW, Rajagopalan KV (1991) Molybdenum cofactor biosynthesis in Escherichia coli. Requirement of the chlB gene product for the formation of molybdopterin guanine dinucleotide. J Biol Chem 266(19):12140–12145PubMedGoogle Scholar
  71. Kaiser JT, Hu Y, Wiig JA, Rees DC, Ribbe MW (2011) Structure of precursor-bound NifEN: a nitrogenase FeMo cofactor maturase/insertase. Science 331(6013):91–94PubMedPubMedCentralCrossRefGoogle Scholar
  72. Karpinska B, Karpinski S, Hallgren J (1997) The chlB gene encoding a subunit of light-independent protochlorophyllide reductase is edited in chloroplasts of conifers. Curr Genet 31:343–347PubMedCrossRefGoogle Scholar
  73. Kasalický V, Zeng Y, Piwosz K, Šimek K, Kratochvilová H, Koblížek M (2018) Aerobic anoxygenic photosynthesis is commonly present within the genus Limnohabitans. Appl Environ Microbiol 84:2116–2117Google Scholar
  74. Kaschner M, Loeschcke A, Krause J, Minh BQ, Heck A, Endres S, Svensson V, Wirtz A, von Haeseler A, Jaeger K-E, Drepper T, Krauss U (2014) Discovery of the first light-dependent protochlorophyllide oxidoreductase in anoxygenic phototrophic bacteria. Mol Microbiol 93:1066–1078PubMedCrossRefGoogle Scholar
  75. Kehoe DM (2010) Chromatic adaptation and the evolution of light color sensing in cyanobacteria. Proc Natl Acad Sci U S A 107:9029–9030PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kehoe DM, Grossman AR (1994) Complementary chromatic adaptation: photoperception to gene regulation. Semin Cell Biol 5:303–313PubMedCrossRefGoogle Scholar
  77. Kerfeld CA, Melnicki MR (2016) Assembly, function and evolution of cyanobacterial carboxysomes. Curr Opin Plant Biol 31:66–75PubMedCrossRefGoogle Scholar
  78. Khan H, Archibald JM (2008) Lateral transfer of introns in the cryptophyte plastid genome. Nucleic Acids Res 36:3043–3053PubMedPubMedCentralCrossRefGoogle Scholar
  79. Khan H, Parks N, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM (2007) Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny. Mol Biol Evol 24:1832–1842PubMedCrossRefGoogle Scholar
  80. Kiesel S, Wätzlich D, Lange C, Reijerse E, Bröcker MJ, Rüdiger W, Lubitz W, Scheer H, Moser J, Jahn D (2015) Iron-sulfur cluster-dependent catalysis of chlorophyllide a oxidoreductase from Roseobacter denitrificans. J Biol Chem 290:1141–1154Google Scholar
  81. Kim S, Park MG (2016) First marine photosynthetic testate amoeba containing the chromatophore: Paulinella longichromatophora. Protistology 10Google Scholar
  82. Kim JI, Yoon HS, Yi G, Kim HS, Yih W, Shin W (2015) The plastid genome of the cryptomonad Teleaulax amphioxeia. PLoS One 10:0129284Google Scholar
  83. Kim JI, Moore CE, Archibald JM, Bhattacharya D, Yi G, Yoon HS, Shin W (2017) Evolutionary dynamics of cryptophyte plastid genomes. Genome Biol Evol 9:1859–1872Google Scholar
  84. Kinney JN, Salmeen A, Cai F, Kerfeld CA (2012) Elucidating essential role of conserved carboxysomal protein CcmN reveals common feature of bacterial microcompartment assembly. J Biol Chem 287:17729–17736PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874PubMedCrossRefGoogle Scholar
  86. Kusumi J, Sato A, Tachida H (2006) Relaxation of functional constraint on light-independent protochlorophyllide oxidoreductase in Thuja. Mol Biol Evol 23:941–948PubMedCrossRefGoogle Scholar
  87. Lauritano C, De Luca D, Ferrarini A, Avanzato C, Minio A, Esposito F, Ianora A (2017) De novo transcriptome of the cosmopolitan dinoflagellate Amphidinium carterae to identify enzymes with biotechnological potential. Sci Rep 7:11701PubMedPubMedCentralCrossRefGoogle Scholar
  88. Li J, Timko MP (1996) The pc-1 phenotype of Chlamydomonas reinhardtii results from a deletion mutation in the nuclear gene for NADPH: protochlorophyllide oxidoreductase. Plant Mol Biol 30:15–37PubMedCrossRefGoogle Scholar
  89. Li J, Goldschmidt-Clermont M, Timko MP (1993) Chloroplast-encoded chlB is required for light-independent protochlorophyllide reductase activity in Chlamydomonas reinhardtii. Plant Cell 5:1817–1829PubMedPubMedCentralCrossRefGoogle Scholar
  90. Liu XQ, Xu H, Huang C (1993) Chloroplast ChlB gene is required for light-independent chlorophyll accumulation in Chlamydomonas reinhardtii. Plant Mol Biol 23:297–308PubMedCrossRefGoogle Scholar
  91. Masuda T (2008) Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls. Photosynth Res 96:121–143PubMedCrossRefGoogle Scholar
  92. Masuda T, Fujita Y (2008) Regulation and evolution of chlorophyll metabolism. Photochem Photobiol Sci 7:1131–1149PubMedCrossRefGoogle Scholar
  93. Masuda T, Takamiya K (2004) Novel insights into the enzymology, regulation and physiological functions of light-dependent protochlorophyllide oxidoreductase in angiosperms. Photosynth Res 81:1–29PubMedCrossRefGoogle Scholar
  94. Meinecke L, Alawady A, Schroda M, Willows R, Kobayashi MC, Niyogi KK, Grimm B, Beck CF (2010) Chlorophyll-deficient mutants of Chlamydomonas reinhardtii that accumulate magnesium protoporphyrin IX. Plant Mol Biol 72:643–658PubMedPubMedCentralCrossRefGoogle Scholar
  95. Mohanty S, Grimm B, Tripathy BC (2006) Light and dark modulation of chlorophyll biosynthetic genes in response to temperature. Planta 224:692–699PubMedCrossRefGoogle Scholar
  96. Moser J, Lange C, Krausze J, Rebelein J, Schubert WD, Ribbe MW, Heinz DW, Jahn D (2013) Structure of ADP-aluminium fluoride-stabilized protochlorophyllide oxidoreductase complex. Proc Natl Acad Sci U S A 110(6):2094–2098PubMedPubMedCentralCrossRefGoogle Scholar
  97. Muraki N, Nomata J, Ebata K, Mizoguchi T, Shiba T, Tamiaki H, Kurisu G, Fujita Y (2010) X-ray crystal structure of the light-independent protochlorophyllide reductase. Nature 465(7294):110–114PubMedCrossRefGoogle Scholar
  98. Nagata N, Tanaka R, Satoh S, Tanaka A (2005) Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17(1):233–240PubMedPubMedCentralCrossRefGoogle Scholar
  99. Nascimento SM, Zou Y, Cheng Q (2016) Review of studies on the last enzymes in bacteriochlorophyll (Bchl) and chlorophyll (Chl) biosynthesis. Am J Plant Sci 7:1639–1651CrossRefGoogle Scholar
  100. Nazir S, Khan MS (2012) Chloroplast-encoded chlB gene from Pinus thunbergii promotes root and early chlorophyll pigment development in Nicotiana tabaccum. Mol Biol Rep 39(12):10637–10646PubMedCrossRefGoogle Scholar
  101. Nomata J, Swem LR, Bauer CE, Fujita Y (2005) Overexpression and characterization of dark-operative protochlorophyllide reductase from Rhodobacter capsulatus. Biochim Biophys Acta Bioenerg 1708:229–237CrossRefGoogle Scholar
  102. Nomata J, Kitashima M, Inoue K, Fujita Y (2006a) Nitrogenase Fe protein like Fe-S cluster is conserved in L-protein (Bchl) of dark-operative protochlorophyllide reductase from Rhodobacter capsulatus. FEBS Lett 580:6151–6154PubMedCrossRefGoogle Scholar
  103. Nomata J, Mizoguchi T, Tamiaki H, Fujita Y (2006b) A second nitrogenase-like enzyme for bacteriochlorophyll biosynthesis: reconstitution of chlorophyllide a reductase with purified X-protein (BchX) and YZ-protein (BchY-BchZ) from Rhodobacter capsulatus. J Biol Chem 281:15021–15028PubMedCrossRefGoogle Scholar
  104. Nomata J, Ogawa T, Kitashima M, Inoue K, Fujita Y (2008) NB protein (BchN–BchB) of dark operative protochlorophyllide reductase is the catalytic component containing oxygen tolerant Fe–S clusters. FEBS Lett 582:1346–1350PubMedCrossRefGoogle Scholar
  105. Nomata J, Kondo T, Mizoguchi T, Tamiaki H, Itoh S, Fujita Y (2014) Dark-operative protochlorophyllide oxidoreductase generates substrate radicals by an iron-sulphur cluster in bacteriochlorophyll biosynthesis. Sci Rep 4:5455PubMedPubMedCentralCrossRefGoogle Scholar
  106. Nomata J, Terauchi K, Fujita Y (2016) Stoichiometry of ATP hydrolysis and chlorophyllide formation of dark-operative protochlorophyllide oxidoreductase from Rhodobacter capsulatus. Biochem Biophys Res Commun 470:704–709PubMedCrossRefGoogle Scholar
  107. Nowack EC (2014) Paulinella chromatophora—rethinking the transition from endosymbiont to organelle. Acta Soc Bot Pol 83:387–397CrossRefGoogle Scholar
  108. Nowack EC, Grossman AR (2012) Trafficking of protein into the recently established photosynthetic organelles of Paulinella chromatophora. Proc Natl Acad Sci U S A 109:5340–5345PubMedPubMedCentralCrossRefGoogle Scholar
  109. Olson JM (2001) ‘Evolution of photosynthesis’ (1970), re-examined thirty years later. Photosynth Res 68:95–112PubMedCrossRefGoogle Scholar
  110. Oster U, Tanaka R, Tanaka A, Rüdiger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J 21:305–310PubMedCrossRefGoogle Scholar
  111. Ota S, Vaulot D (2012) Lotharella reticulosa sp. nov.: a highly reticulated network forming Chlorarachniophyte from the Mediterranean Sea. Protist 163:91–104PubMedCrossRefGoogle Scholar
  112. Pattanaik B, Whitaker MJ, Montgomery BL (2011) Convergence and divergence of the photoregulation of pigmentation and cellular morphology in Fremyella diplosiphon. Plant Signal Behav 6:2038–2041PubMedPubMedCentralCrossRefGoogle Scholar
  113. Pattanayak GK, Biswal AK, Reddy VS, Tripathy BC (2005) Light-dependent regulation of chlorophyll b biosynthesis in chlorophyllide a oxygenase overexpressing tobacco plants. Biochem Biophys Res Commun 14:466–471CrossRefGoogle Scholar
  114. Pavlovič A, Slováková Ľ, Demko V, Durchan M, Mikulová K, Hudák J (2009) Chlorophyll biosynthesis and chloroplast development in etiolated seedlings of Ginkgo biloba L. Photosynthetica 47:510–516CrossRefGoogle Scholar
  115. Postgate JR (1982) Biological nitrogen fixation: fundamentals. Philos Trans R Soc Lond B 296(1082):375–385CrossRefGoogle Scholar
  116. Prechtl J, Kneip C, Lockhart P, Wenderoth K, Maier UG (2004) Intracellular spheroid bodies of Rhopalodia gibba have nitrogen-fixing apparatus of cyanobacterial origin. Mol Biol Evol 21(8):1477–1481PubMedCrossRefGoogle Scholar
  117. Rabinowitch EI, Govindjee (1965) The role of chlorophyll in photosynthesis. Sci Am 213:74–83PubMedCrossRefGoogle Scholar
  118. Rabinowitch EI, Govindjee (1969) Photosynthesis. Wiley, New York, pp 1–273Google Scholar
  119. Rebeiz CA, Benning C, Bohnert H, Daniell H, Hoober JK, Lichtenthaler HK, Portis AR, Tripathy BC (eds) (2010) The chloroplast: basics and applications. Advances in photosynthesis and respiration. Springer, DordrechtGoogle Scholar
  120. Reinbothe S, Reinbothe C (1996) The regulation of enzymes involved in chlorophyll biosynthesis. In: EJB reviews. Springer, Berlin, pp 99–119Google Scholar
  121. Reinbothe C, El Bakkouri M, Buhr F, Muraki N, Nomata J, Kurisu G, Fujita Y, Reinbothe S (2010) Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction. Trends Plant Sci 15:614–624PubMedCrossRefGoogle Scholar
  122. Rice DW, Palmer JD (2006) An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biol 4:31PubMedPubMedCentralCrossRefGoogle Scholar
  123. Ruck EC, Linard SR, Nakov T, Theriot EC, Alverson AJ (2017) Hoarding and horizontal transfer led to an expanded gene and intron repertoire in the plastid genome of the diatom, Toxarium undulatum (Bacillariophyta). Curr Genet 63:499–507PubMedCrossRefGoogle Scholar
  124. Santini CL, Iobbi-Nivol C, Romane C, Boxer DH, Giordano G (1992) Molybdoenzyme biosynthesis in Escherichia coli: in vitro activation of purified nitrate reductase from a chlB mutant. J Bacteriol 174(24):7934–7940PubMedPubMedCentralCrossRefGoogle Scholar
  125. Sarma R, Barney BM, Hamilton TL, Jones A, Seefeldt LC, Peters JW (2008) Crystal structure of the L protein of Rhodobacter sphaeroides light-independent protochlorophyllide reductase with MgADP bound: a homologue of the nitrogenase Fe protein. Biochem 47:13004–13015CrossRefGoogle Scholar
  126. Satjarak A, Paasch AE, Graham LE, Kim E (2016) Complete chloroplast genome sequence of phagomixotrophic green alga Cymbomonas tetramitiformis. Genome Announc 4:00551–00516CrossRefGoogle Scholar
  127. Schirrmeister BE, de Vos JM, Antonelli A, Bagheri HC (2013) Evolution of multicellularity coincided with increased diversification of cyanobacteria and the great oxidation event. Proc Natl Acad Sci U S A 110:1791–1796PubMedPubMedCentralCrossRefGoogle Scholar
  128. Schoefs B (2000) The light-dependent and light-independent reduction of protochlorophyllide a to chlorophyllide a. Photosynthetica 36:481–496CrossRefGoogle Scholar
  129. Schoefs B, Franck F (2003) Protochlorophyllide reduction: mechanisms and evolution. Photochem Photobiol 78:543–557PubMedCrossRefGoogle Scholar
  130. Shi C, Shi X (2006) Expression switching of three genes encoding light-independent protochlorophyllide oxidoreductase in Chlorella protothecoides. Biotechnol Lett 28:261–265PubMedCrossRefGoogle Scholar
  131. Shui J, Saunders E, Needleman R, Nappi M, Cooper J, Hall L, Kehoe D, Stowe-Evans E (2009) Light-dependent and light-independent protochlorophyllide oxidoreductases in the chromatically adapting cyanobacterium Fremyella diplosiphon UTEX 481. Plant Cell Physiol 50:1507–1521PubMedCrossRefGoogle Scholar
  132. Silva PJ (2014) With or without light: comparing the reaction mechanism of dark-operative protochlorophyllide oxidoreductase with the energetic requirements of the light-dependent protochlorophyllide oxidoreductase. PeerJ 2:551CrossRefGoogle Scholar
  133. Smith RL, Van Baalen C, Tabita FR (1987) Alteration of the Fe protein of nitrogenase by oxygen in the cyanobacterium Anabaena sp. strain CA. J Bacteriol 169(6):2537–2542PubMedPubMedCentralCrossRefGoogle Scholar
  134. Soora M, Cypionka H (2013) Light enhances survival of Dinoroseobacter shibae during long-term starvation. PLoS One 8:83960CrossRefGoogle Scholar
  135. Sousa FL, Shavit-Grievink L, Allen JF, Martin WF (2012) Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, not photosystem merger, at the origin of oxygenic photosynthesis. Genome Biol Evol 5:200–216PubMedCentralCrossRefGoogle Scholar
  136. Stolárik T, Hedtke B, Šantrůček J, Ilík P, Grimm B, Pavlovič A (2017) Transcriptional and post-translational control of chlorophyll biosynthesis by dark-operative protochlorophyllide oxidoreductase in Norway spruce. Photosynth Res 132:165–179PubMedCrossRefGoogle Scholar
  137. Stolárik T, Nožková V, Nosek L, Pavlovič A (2018) Dark chlorophyll synthesis may provide a potential for shade tolerance as shown by a comparative study with seedlings of European larch (Larix decidua) and Norway spruce (Picea abies). Trees 1–15Google Scholar
  138. Stowe WC, Brodie-Kommit J, Stowe-Evans E (2011) Characterization of complementary chromatic adaptation in Gloeotrichia UTEX 583 and identification of a transposon-like insertion in the cpeBA operon. Plant Cell Physiol 52:553–562PubMedCrossRefGoogle Scholar
  139. Suzuki JY, Bauer CE (1992) Light-independent chlorophyll biosynthesis: involvement of the chloroplast gene chlL (frxC). Plant Cell 4:929–940PubMedPubMedCentralCrossRefGoogle Scholar
  140. Suzuki JY, Bollivar DW, Bauer CE (1997) Genetic analysis of chlorophyll biosynthesis. Annu Rev Genet 31:61–89PubMedCrossRefGoogle Scholar
  141. Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346PubMedCrossRefGoogle Scholar
  142. Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K, Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci U S A 95:12719–12723PubMedPubMedCentralCrossRefGoogle Scholar
  143. Tewari AK, Tripathy BC (1998) Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiol 117:851–858CrossRefGoogle Scholar
  144. Tewari AK, Tripathy BC (1999) Acclimation of chlorophyll biosynthetic reactions to temperature stress in cucumber (Cucumis sativus L). Planta 208:431–437CrossRefGoogle Scholar
  145. Thakur S, Bothra AK, Sen A (2013) Functional divergence outlines the evolution of novel protein function in NifH/BchL protein family. J Biosci 38(4):733–740PubMedCrossRefGoogle Scholar
  146. Trapp EM, Adler S, Zau-ner S, Maier UG (2012) Rhopalodia gibba and its endosymbionts as a model for early steps in a cyanobacterial primary endosymbiosis. Endocytobiosis Cell Res, 23Google Scholar
  147. Treangen TJ, Rocha EP (2011) Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLoS Genet 7:1001284CrossRefGoogle Scholar
  148. Tripathy BC, Pattanayak GK (2010) Singlet oxygen-induced oxidative stress in plants. In: Rebeiz CA et al (eds) The chloroplast: basics and applications, vol 31. Springer, Dordrecht, pp 397–423CrossRefGoogle Scholar
  149. Tripathy BC, Pattanayak GK (2012) Chlorophyll biosynthesis in higher plants. In: Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds) Advances in photosynthesis and respiration, vol 34. Springer, Dordrecht, pp 63–94CrossRefGoogle Scholar
  150. Tripathy BC, Rebeiz CA (1986) Chloroplast biogenesis. Demonstration of the monovinyl and divinyl monocarboxylic routes of chlorophyll biosynthesis in higher plants. J Biol Chem 261:13556–13564PubMedGoogle Scholar
  151. Tripathy BC, Rebeiz CA (1988) Chloroplast biogenesis 60: conversion of divinyl protochlorophyllide to monovinyl protochlorophyllide in green(ing) barley, a dark monovinyl/light divinyl plant species. Plant Physiol 87:89–94PubMedPubMedCentralCrossRefGoogle Scholar
  152. Turmel M, Otis C, Lemieux C (2006) The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants. Mol Biol Evol 23:1324–1338PubMedCrossRefGoogle Scholar
  153. Ueda M, Tanaka A, Sugimoto K, Shikanai T, Nishimura Y (2014) Chl B requirement for chlorophyll biosynthesis under short photoperiod in Marchantia polymorpha L. Genome Biol Evol 6:620–628PubMedPubMedCentralCrossRefGoogle Scholar
  154. Walmsley J, Adamson H, Wright M, Wrench P (1999) Can Psilotum and/or Gnetum synthesise chlorophyll in darkness? In: The chloroplast: from molecular biology to biotechnology. Springer, Dordrecht, pp 201–205CrossRefGoogle Scholar
  155. Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699PubMedCrossRefGoogle Scholar
  156. Wong SS (1991) Chemistry of protein conjugation and cross-linking. CRC, Boca RatonGoogle Scholar
  157. Yamada K, Matsuda M, Fujita Y, Matsubara H, Sugai M (1992) A frxC homologue exists in the chloroplast DNAs from various pteridophytes and gymnosperms. Plant Cell Physiol 33:325–327CrossRefGoogle Scholar
  158. Yamamoto H, Nomata J, Fujita Y (2008) Functional expression of nitrogenase-like protochlorophyllide reductase from Rhodobacter capsulatus in Escherichia coli. Photochem Photobiol Sci 7:1238–1242PubMedCrossRefGoogle Scholar
  159. Yamamoto H, Kurumiya S, Ohashi R, Fujita Y (2009) Oxygen sensitivity of a nitrogenase-like protochlorophyllide reductase from the cyanobacterium Leptolyngbya boryana. Plant Cell Physiol 50:1663–1673PubMedCrossRefGoogle Scholar
  160. Yamamoto H, Kurumiya S, Ohashi R, Fujita Y (2011) Functional evaluation of a nitrogenase-like protochlorophyllide reductase encoded by the chloroplast DNA of Physcomitrella patens in the cyanobacterium Leptolyngbya boryana. Plant Cell Physiol 522:1983–1993CrossRefGoogle Scholar
  161. Yamamoto H, Kusumi J, Yamakawa H, Fujita Y (2017) The effect of two amino acid residue substitutions via RNA editing on dark-operative protochlorophyllide oxidoreductase in the blackpine chloroplasts. Sci Rep 7:2377PubMedPubMedCentralCrossRefGoogle Scholar
  162. Yamazaki S, Nomata J, Fujita Y (2006) Differential operation of dual protochlorophyllide reductases for chlorophyll biosynthesis in response to environmental oxygen levels in the cyanobacterium Leptolyngbya boryana. Plant Physiol 142:911–922PubMedPubMedCentralCrossRefGoogle Scholar
  163. Yang ZM, Bauer CE (1990) Rhodobacter capsulatus genes involved in early steps of the bacteriochlorophyll biosynthetic pathway. J Bacteriol 172:5001–5010PubMedPubMedCentralCrossRefGoogle Scholar
  164. Yang N, Reiher M, Wang M, Harmer J, Duin EC (2007) Formation of a nickel−methyl species in methyl-coenzyme M reductase, an enzyme catalyzing methane formation. J Am Chem Soc 129(36):11028–11029PubMedCrossRefGoogle Scholar
  165. Yoon HS, Hackett JD, Bhattacharya D (2002) A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc Natl Acad Sci U S A 99:11724–11729PubMedPubMedCentralCrossRefGoogle Scholar
  166. Yoon HS, Nakayama T, Reyes-Prieto A, Andersen RA, Boo SM, Ishida KI, Bhattacharya D (2009) A single origin of the photosynthetic organelle in different Paulinella lineages. BMC Evol Biol 9:98–98PubMedPubMedCentralCrossRefGoogle Scholar
  167. Zeng Y, Feng F, Medova H, Dean J, Koblizek M (2014) Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc Natl Acad Sci U S A 111:7795–7800PubMedPubMedCentralCrossRefGoogle Scholar
  168. Zheng Q, Zhang R, Fogg PC, Beatty JT, Wang Y, Jiao N (2012) Gain and loss of phototrophic genes revealed by comparison of two Citromicrobium bacterial genomes. PLoS One 7:e35790PubMedPubMedCentralCrossRefGoogle Scholar
  169. Zsebo KM, Hearst JE (1984) Genetic-physical mapping of a photosynthetic gene cluster from R. capsulata. Cell 37:937–947PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations