, Volume 256, Issue 2, pp 511–519 | Cite as

Asparagine alters action potential parameters in single plant cell

  • Indre LapeikaiteEmail author
  • Ugne Dragunaite
  • Vilmantas Pupkis
  • Osvaldas Ruksenas
  • Vilma Kisnieriene
Original Article


Effect of amino acid l-asparagine on electrical signalling of single Nitellopsis obtusa (Characeaen) cell was investigated using glass-microelectrode technique in current-clamp and voltage-clamp modes. Cell exposure for 30 min to 0.1 mM and 1 mM of asparagine resulted in changes of electrically stimulated action potential (AP) parameters in comparison to standard conditions. Results indicate that asparagine acts in dose-dependent manner: increases AP amplitude by hyperpolarizing AP threshold potential (Eth), prolongs action potential repolarization, increases maximum Cl efflux amplitude along with the increase of activation and inactivation durations. Presented findings provide new aspects of exogenous amino acids’ effect on plants’ electrical signalling with emphasis on separate single plant cell excitability and AP characteristics.


Amino acids Electrical signalling AP amplitude Voltage-clamp Cl efflux Nitellopsis 



The authors thank Vidmantas Sakalauskas (Vilnius University) for the technical support.


  1. Beilby MJ (2007) Action potential in Charophytes. Int Rev Cytol 257:43–82. CrossRefPubMedGoogle Scholar
  2. Beilby MJ, Al Khazaaly S (2016) Re-modeling Chara action potential: I. from Thiel model of Ca2+ transient to action potential form. AIMS Biophys 3:431–449. CrossRefGoogle Scholar
  3. Berestovsky GN, Kataev AA (2005) Voltage-gated calcium and Ca2+-activated chloride channels and Ca2+ transients: voltage-clamp studies of perfused and intact cells of Chara. Eur Biophys J 34:973–986. CrossRefPubMedGoogle Scholar
  4. Cheng Y, Tian Q, Zhang W-H (2016) Glutamate receptors are involved in mitigating effects of amino acids on seed germination of Arabidopsis thaliana under salt stress. Environ Exp Bot 130:68–78. CrossRefGoogle Scholar
  5. Chiu JC, Brenner ED, DeSalle R, Nitabach MN, Holmes TC, Coruzzi GM (2002) Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana. J Biol Chem 276:4338–4343. Google Scholar
  6. Dziubińska H (2003) Ways of signal transmission and physiological role of electrical potentials in plants. Acta Soc Bot Pol 72:309–318. CrossRefGoogle Scholar
  7. Felle HH, Zimmermann MR (2007) Systemic signalling in barley through action potentials. Planta 226:203–214. CrossRefPubMedGoogle Scholar
  8. Forde BG, Roberts MR (2014) Glutamate receptor-like channels in plants: a role as amino acid sensors in plant defence? F1000Prime Rep 6:37. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257. CrossRefPubMedGoogle Scholar
  10. Hedrich R (2012) Ion channels in plants. Physiol Rev 92:1777–1811. CrossRefPubMedGoogle Scholar
  11. Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17:2142–2155.
  12. Homann U, Thiel G (1994) Cl and K+ channel currents during the action potential in Chara. Simultaneous recording of membrane voltage and patch currents. J Membrane Biol 141,297-309309:297–309.
  13. Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A (2005) Dissolved organic nitrogen uptake by plants—an important N uptake pathway? Soil Biol Biochem 37:413–423. CrossRefGoogle Scholar
  14. Katsuhara M, Tazawa M (1992) Calcium-regulated channels and their bearing on physiological activities in Characean cells. Philos Trans R Soc Lond B Biol Sci 338:19–29.
  15. Kisnierienë V, Sakalauskas V (2007) The effect of aluminium on bioelectrical activity of the Nitellopsis obtusa cell membrane after H+-ATPase inhibition. Cent Eur J Biol 2:222. Google Scholar
  16. Kisnierienė V, Sakalauskas V, Pleskačiauskas A, Yurin V, Rukšėnas O (2009) The combined effect of Cd2+ and ACh on action potentials of Nitellopsis obtusa cells. Cent Eur J Biol 4:343–350. Google Scholar
  17. Kisnieriene V, Ditchenko TI, Kudryashov AP, Sakalauskas V, Yurin V, Ruksenas O (2012) The effect of acetylcholine on Characeae K+ channels at rest and during action potential generation. Cent Eur J Biol 7:1066–1075. Google Scholar
  18. Kisnieriene V, Lapeikaite I, Sevriukova O, Ruksenas O (2016) The effects of Ni2+ on electrical signaling of Nitellopsis obtusa cells. J Plant Res 129:551–558. CrossRefPubMedGoogle Scholar
  19. Kisnieriene V, Lapeikaite I, Pupkis V (2018) Electrical signalling in Nitellopsis obtusa: potential biomarkers of biologically active compounds. Funct Plant Biol 45:132–142. CrossRefGoogle Scholar
  20. Krol E, Dziubinska H, Stolarz M, Trebacz K (2006) Effects of ion channel inhibitors on cold- and electrically-induced action potentials in Dionaea muscipula. Biol Plant 50 (3): 411-416.
  21. Krol E, Dziubinska H, Trebacz K, Koselski M, Stolarz M (2007) The influence of glutamic and aminoacetic acids on the excitability of the liverwort Conocephalum conicum. J Plant Physiol 164:773–784. CrossRefPubMedGoogle Scholar
  22. Lacombe B (2001) The identity of plant glutamate receptors. Science 292:1486b–1487. doi:
  23. Lam HM, Chiu J, Hsieh MH, Meisel L, Oliveira IC, Shin M, Coruzzi G (1998) Glutamate-receptor genes in plants. Nature 396:125–126. CrossRefPubMedGoogle Scholar
  24. Lunevsky VZ, Zherelova OM, Vostrikov IY, Berestovsky GN (1983) Excitation of Characeae cell membranes as a result of activation of calcium and chloride channels. J Membr Biol 72:43–58. CrossRefGoogle Scholar
  25. Mousavi SAR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE (2013) Glutamate receptor-like genes mediate leaf-to-leaf wound signalling. Nature 500:422–426. CrossRefPubMedGoogle Scholar
  26. Ortiz-Lopez A, Chang H., & Bush D. R. (2000). Amino acid transporters in plants. Biochimica et Biophysica Acta. doi:
  27. Price MB, Jelesko J, Okumoto S (2012) Glutamate receptor homologs in plants: functions and evolutionary origins. Front Plant Sci 3:235. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Pyatygin SS, Opritov VA, Vodeneev VA (2008) Signaling role of action potential in higher plants. Russ J Plant Physiol 55:285–291. CrossRefGoogle Scholar
  29. Qi Z, Stephens NR, Spalding EP (2006) Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile. Plant Physiol 142:963–971. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Recasens M, Sassetti I, Nourigat A, Sladeczek F, Bockaert J (1987) Characterization of subtypes of excitatory amino acid receptors involved in the stimulation of inositol phosphate synthesis in rat brain synaptoneurosomses. Eur J Pharmacol 141:87–93. CrossRefPubMedGoogle Scholar
  31. Shepherd VA, Beilby MJ, Al Khazaaly SAS, Shimmen T (2008) Mechano-perception in Chara cells: the influence of salinity and calcium on touch-activated receptor potentials, action potentials and ion transport. Plant Cell Environ 31:1575–1591. CrossRefPubMedGoogle Scholar
  32. Sivaguru M, Pike S, Gassmann W, Baskin TI (2003) Aluminum rapidly depolymerizes cortical microtubules and depolarizes the plasma membrane: evidence that these responses are mediated by a glutamate receptor. Plant Cell Physiol 44:667–675. CrossRefPubMedGoogle Scholar
  33. Stephens NR, Qi Z, Spalding EP (2008) Glutamate receptor subtypes evidenced by differences in desensitization and dependence on the GLR3.3 and GLR3.4 genes. Plant Physiol 146:529–538. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Stolarz M, Dziubinska H (2017) Osmotic and salt stresses modulate spontaneous and glutamate-induced action potentials and distinguish between growth and circumnutation in Helianthus annuus seedlings. Front Plant Sci 8:1–13. CrossRefGoogle Scholar
  35. Stolarz M, Król E, Dziubinska H (2010) Glutamatergic elements in an excitability and circumnutation mechanism. Plant Signal Behav 5:1108–1111. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Tapken D, Hollmann M (2008) Arabidopsis thaliana glutamate receptor ion channel function demonstrated by ion pore transplantation. J Mol Biol 383:36–48. CrossRefPubMedGoogle Scholar
  37. Tapken D, Anschütz U, Liu L-H et al (2013) A plant homolog of animal glutamate receptors is an ion channel gated by multiple hydrophobic amino acids. Sci Signal 6:ra47. CrossRefPubMedGoogle Scholar
  38. Thiel G, Homann U, Plieth C (1997) Ion channel activity during the action potential in Chara: new insights with new techniques. J Exp Bot 48:609–622. CrossRefPubMedGoogle Scholar
  39. Tsutsui I, Ohkawa T, Nagai R, Kishimoto U (1987) Role of calcium ion in the excitability and eiectrogenic pump activity of the Chara corallina membrane: I. effects of La 3+, verapamil, EGTA, W-7, and TFP on the action potential. J Membr Biol 108:97–108. Google Scholar
  40. Vincill ED, Bieck AM, Spalding EP (2012) Ca(2+) conduction by an amino acid-gated ion channel related to glutamate receptors. Plant Physiol 159:40–46. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Vincill ED, Clarin AE, Molenda JN, Spalding EP (2013) Interacting glutamate receptor-like proteins in phloem regulate lateral root initiation in Arabidopsis. Plant Cell 25:1304–1313. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Wacke M, Thiel G, Hütt M-T (2003) Ca2+ dynamics during membrane excitation of green alga Chara: model simulations and experimental data. J Membr Biol 191:179–192. CrossRefPubMedGoogle Scholar
  43. Weiland M, Mancuso S, Baluska F (2016) Signalling via glutamate and GLRs in Arabidopsis thaliana. Funct Plant Biol 43:1–25. CrossRefGoogle Scholar
  44. Williamson RE, Ashley CC (1982) Free Ca2+ and cytoplasmic streaming in the alga Chara. Nature 296:647–651. CrossRefPubMedGoogle Scholar
  45. Yoshida R, Mori I, Kamizono N, Shichiri Y, Shimatani T, Miyata F, Honda K, Iwai S (2016) Glutamate functions in stomatal closure in Arabidopsis and fava bean. J Plant Res 129:39–49. CrossRefPubMedGoogle Scholar
  46. Zhong B, Sun L, Penny D (2015) The origin of land plants: a phylogenomic perspective. Evol Bioinforma 137. doi:

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Biosciences, Life Sciences CentreVilnius UniversityVilniusLithuania

Personalised recommendations