Advertisement

Protoplasma

pp 1–12 | Cite as

Transcript profiling of carotenoid/apocarotenoid biosynthesis genes during corm development of saffron (Crocus sativus L.)

  • Munish Sharma
  • Sanjana Kaul
  • Manoj Kumar Dhar
Original Article

Abstract

The dried stigmas of saffron constitute the world’s costliest spice. Saffron has many therapeutic applications due to the presence of apocarotenoids. The latter are synthesized at different stages of development, and the biosynthetic pathway involves several genes encoding different enzymes. In order to understand the differential expression of various genes of the pathway, eight distinct developmental stages (S1-early to S8-late) were identified. The corms were assorted into three groups (I, II, and III) based on corm weight. Expression profiles of 12 carotenoid/apocarotenoid genes were studied. The expression of all genes was minimum/least in groups I and II corms during bud development. Lowest expression of carotenogenic genes (CsPSY, CsPDS, CsZDS, CsCRTISO, CsLYC-β1, CsLYC-ε, CsBCH2, and CsNCED) was observed during early stages (S1–S3) of corm growth (dormant period). In group III corms, increased expression of apocarotenoid genes (CsZCO, CsCCD2, CsUGT, and CsALDH) was observed during S4 to S8 stages (reproductive period, floral differentiation). Besides, expression profiles of genes in apical and axillary buds were also examined. Of all the genes studied, apocarotenoid biosynthesis genes (CsBCH2, CsZCO, CsCCD2, CsALDH, and CsUGT) were found to be upregulated in apical bud than in the axillary bud. The results indicated that interaction of phytohormones and sugars, mother corm reserves and the influence of internal and external factors may be contributing to the growth of saffron corm/bud. The study has laid a foundation for further research on the molecular mechanisms underlying bud dormancy/growth in saffron.

Keywords

Apocarotenoids Biosynthetic pathway Bud development Crocus sativus Real-time PCR 

Notes

Acknowledgements

The authors are thankful to Coordinator Bioinformatics Centre, School of Biotechnology , University of Jammu. The authors would also like to acknowledge Prof. Nikhil Churungoo, NEHU India  for his valuable suggestions.

Funding information

This work was supported by grants received from the Department of Biotechnology (DBT), Government of India, under Saffron Network programme (BT/PR5397/PBD/16/974/2012 and BT/PR5409/PBD/16/977/2012 from 2013 to 2018).

Compliance with ethical standards

Ethical compliance

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

709_2018_1296_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1218 kb)

References

  1. Abdulhabip O, Kaan E, Tuncay D (2017) Determination of optimum corm size for saffron (crocus sativus l.) and corm yield under the harran plain conditions. ARPN J Agric Biol Sci 12(7):236–240Google Scholar
  2. Abdullaev FI, Riveron-Negrete L, Caballero-Ortega H, Herdandez JM, Perez-Lopez I, Pereda-Miranda R, Espinosa-Aguirre JJ (2003) Use of in vitro assays to assess the potential antigenotoxic and cytotoxic effects of saffron (Crocus sativus L.). Toxicol in Vitro 17:731–736.  https://doi.org/10.1016/S0887-2333(03)00098-5 CrossRefPubMedGoogle Scholar
  3. Ahmad M, Zaffar G, Habib M, Arshid A, Dar NA, Dar ZA (2014) Saffron (Crocus sativus L.) in the light of biotechnological approaches: a review. Sci Res Essays 9(2):13–18.  https://doi.org/10.5897/SRE2013.5773 CrossRefGoogle Scholar
  4. Ahrazem O, Rubio-Moraga A, Trapero A, Gomez-Gomez L (2012) Developmental and stress regulation of gene expression for a 9-cis-epoxycarotenoid dioxygenase, CstNCED, isolated from Crocus sativus stigmas. J Exp Bot 63:681–694.  https://doi.org/10.1093/jxb/err293 CrossRefPubMedGoogle Scholar
  5. Ahrazem O, Rubio-Moraga A, Nebauer SG, Molina RV, Gomez-Gomez L (2015) Saffron: its phytochemistry, developmental processes and biotechnological prospects. J Agric Food Chem 63:8751–8764.  https://doi.org/10.1021/acs.jafc.5b03194 CrossRefPubMedGoogle Scholar
  6. Ahrazem O, Argandona J, Fiore A, Aguado C, Lujan R, Rubio-Moraga A, Marro M, Araujo-Andrade C, Loza-Alvarez P, Diretto G, Gomez-Gomez L (2018) Transcriptome analysis in tissue sectors with contrasting crocins accumulation provides novel insights into apocarotenoid biosynthesis and regulation during chromoplast biogenesis. Sci Rep 8(1):2843.  https://doi.org/10.1038/s41598-018-21225-z CrossRefPubMedPubMedCentralGoogle Scholar
  7. Alvarez-Orti M, Gomez-Gomez L, Rubio A, Escribano J, Pardo J, Jimenez F, Fernandez JA (2003) Development and gene expression in saffron corms. Acta Hortic 650:141–153Google Scholar
  8. Baba SA, Mohiuddin T, Basu S, Swarnkar MK, Malik AH, Wani ZA, Abbas N, Singh AK, Ashraf N (2015) Comprehensive transcriptome analysis of Crocus sativus for discovery and expression of genes involved in apocarotenoid biosynthesis. BMC Genomics 16:698.  https://doi.org/10.1186/s12864-015-1894-5 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bagri J, Yadav A, Anwar K, Dkhar J, Singla-Pareek SL, Pareek A (2017) Metabolic shift in sugars and amino acids regulates sprouting in Saffron corm. Sci Rep 7(1):11904.  https://doi.org/10.1038/s41598-017-10528-2 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Beygi HR, Kianmehr MH, Arab-Hosseini A (2006) Correlation study of dimensions and mass of saffron corm. Proceedings of 2nd International Symposium on Saffron. In: ISHS-Book of Abstracts: 53Google Scholar
  11. Botella O, De Juan JA, Munoz MR, Moya A, Lopez H (2002) Descripcion morfologia y ciclo anual del azafran (Crocus sativus L). Cuadernos de Fitipatologia 71:18–28Google Scholar
  12. Bouvier F, Suire C, Mutterer J, Camara B (2003) Oxidative remodeling of chromoplast carotenoids: identification of the carotenoid dioxygenase CsCCD and CsZCD genes involved in Crocus secondary metabolite biogenesis. Plant Cell 15:47–62.  https://doi.org/10.1105/tpc.006536 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brighton CA (1977) Cytology of Crocus sativus and its allies (Iridaceae). Plant Syst Evol 128:137–157CrossRefGoogle Scholar
  14. Caballero-Ortega H, Pereda-Miranda R, Abdullaev FI (2007) HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chem 100:1126–1131.  https://doi.org/10.1016/j.foodchem.2005.11.020 CrossRefGoogle Scholar
  15. Carmona M, Zalacain A, Alonso G (2006) El color, sabor y aroma del azafran especia. Altaban Ediciones, AlbaceteGoogle Scholar
  16. Castillo R, Fernandez JA, Gomez-Gomez L (2005) Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives. Plant Physiol 139:674–689.  https://doi.org/10.1104/pp.105.067827 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cazzonelli CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15:266–274.  https://doi.org/10.1016/j.tplants.2010.02.003 CrossRefPubMedGoogle Scholar
  18. Chen FC, Lee WL, Huang JZ, Huang YW (2013) Carotenoid composition and biosynthetic gene expression in Oncidium flower. The 11th Asia Pacific Orchid Conference, 888 Ishikawa, Motobu, Kunigami, Okinawa Japan, pp 1-11Google Scholar
  19. Cheng X, Ruyter-Spira C, Bouwmeester H (2013) The interaction between strigolactones and other plant hormones in the regulation of plant development. Front Plant Sci 4:199.  https://doi.org/10.3389/fpls.2013.00199 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chrungoo NK (1992) Concepts of dormancy regulation in vegetative plant propagules: a review. Environ Exp Bot 32(4):309–318.  https://doi.org/10.1016/0098-8472(92)90043-2 CrossRefGoogle Scholar
  21. Chrungoo NH, Farooq S (1985) Correlative changes in carbohydrate content and starch hydrolyzing enzyme in corm of saffron crocus (Crocus sativus L.) during dormancy and sprouting. Biochem Physiol Pflanz 180:55–61.  https://doi.org/10.1016/S0015-3796(85)80079-2 CrossRefGoogle Scholar
  22. Chrungoo N, Koul KK, Farooq S (1983) Carbohydrate changes in corms of saffron crocus (Crocus sativus L.) during dormancy and sprouting. Trop Plant Sci Res 1(4):295–298.  https://doi.org/10.1016/S0015-3796(85)80079-2 CrossRefGoogle Scholar
  23. Cunningham FX (2002) Regulation of carotenoid synthesis and accumulation in plants. Pure Appl Chem 74(8):1409–1417.  https://doi.org/10.1351/pac200274081409 CrossRefGoogle Scholar
  24. Cunningham FX, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557–583.  https://doi.org/10.1146/annurev.arplant.49.1.557 CrossRefPubMedGoogle Scholar
  25. Cunningham FX, Pogson B, Sun Z, McDonald KA, Della Penna D (1996) Functional analysis of the β and ɛ lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell 8:1613–1626.  https://doi.org/10.1105/tpc.8.9.1613 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dhar AK, Sapru R, Rekha K (1988) Studies on saffron in Kashmir 1. Variation in natural population and its cytological behavior. Crop Improv 15(1):48–52Google Scholar
  27. Dhar MK, Sharma M, Bhat A, Chrungoo NK, Kaul S (2017) Functional genomics of apocarotenoids in saffron: insights from chemistry, molecular biology and therapeutic applications. Brief Funct Genomics 16(6):336–347.  https://doi.org/10.1093/bfgp/elx003 CrossRefPubMedGoogle Scholar
  28. Dierck R, De Keyser E, De Riek J, Dhooghe E, Van Huylenbroeck J, Prinsen E, Van Der Straeten D (2016) Change in auxin and cytokinin levels coincides with altered expression of branching genes during axillary bud outgrowth in Chrysanthemum. PLoS One 11:e0161732.  https://doi.org/10.1371/journal.pone.016173 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Douglas MH, Smallfield BM, Wallace AR, Mc Gimpsey JA (2014) Saffron (Crocus sativus L.): the effect of mother corm size on progeny multiplication, flower and stigma production. Sci Hortic 166:50–58.  https://doi.org/10.1016/j.scienta.2013.12.007 CrossRefGoogle Scholar
  30. Farooq S, Koul KK (1983) Changes in gibberellin-like activity in corms of saffron plant (Crocus sativus L.) during dormancy and sprouting. Biochem Physiol Pflanz 178(8):5.  https://doi.org/10.1016/S0015-3796(83)80082-1 CrossRefGoogle Scholar
  31. Fernandez JA (2004) Biology, biotechnology and biomedicine of saffron. Recent Res Dev Plant Sci 2:127–159Google Scholar
  32. Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265.  https://doi.org/10.1016/j.plipres.2003.10.002 CrossRefPubMedGoogle Scholar
  33. Frusciante S, Diretto G, Bruno M, Ferrante P, Pietrella M, Prado-Cabrero A, Giuliano G (2014) Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proc Natl Acad Sci U S A 111(33):12246–12251.  https://doi.org/10.1073/pnas.1404629111 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gomez-Gomez L, Parra-Vega V, Rivas-Sendra A, Segui-Simarro JM, Molina RV, Pallotti C, Rubio-Moraga A, Diretto G, Prieto A, Ahrazem O (2017) Unraveling massive crocins transport and accumulation through proteome and microscopy tools during the development of saffron stigma. Int J Mol Sci 18:76.  https://doi.org/10.3390/ijms18010076 CrossRefPubMedCentralGoogle Scholar
  35. Grilli Caiola M (2004) Saffron reproductive biology. Acta Hortic 650:25–37.  https://doi.org/10.17660/ActaHortic.2004.650.1 CrossRefGoogle Scholar
  36. Grilli-Caiola M, Canini A (2004) Ultrastructure of chromoplasts and other plastids in Crocus sativus L. (Iridiaceae). Plant Biosyst 138:43–52.  https://doi.org/10.1080/11263500410001684116 CrossRefGoogle Scholar
  37. Gu X (2004) Statistical framework for phylogenetic analysis of expression profiles. Genetics 167(1):531–542.  https://doi.org/10.1534/genetics.167.1.531 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Isaacson T, Ohad I, Beyer P, Hirschberg J (2004) Analysis in vitro of the enzyme CRTISO establishes a poly-cis-carotenoid biosynthesis pathway in plants. Plant Physiol 136:4246–4255.  https://doi.org/10.1104/pp.104.052092 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Jain M, Srivastava PL, Verma M, Ghangal R, Garg R (2016) De novo transcriptome assembly and comprehensive expression profiling in Crocus sativus to gain insights into apocarotenoid biosynthesis. Sci Rep 6:22456.  https://doi.org/10.1038/srep22456 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Koul KK, Farooq S (1984) Growth and differentiation in the shoot apical meristem of saffron plant (Crocus sativus L). J Indian Bot Soc 63:153–160Google Scholar
  41. Kumar R, Singh V, Devi K, Sharma M, Singh MK, Ahuja PS (2009) State of art of saffron (Crocus sativus L.) agronomy: a comprehensive review. Food Rev Int 25:44–85.  https://doi.org/10.1080/87559120802458503 CrossRefGoogle Scholar
  42. Le Nard M, De Hertogh AA (1993) Bulb growth and development. In: De Hertogh AA, Le Nard M (eds) The physiology of flower bulbs. Elsevier Science Pub, Amsterdam, pp 29–43Google Scholar
  43. Liu LH, Zabaras D, Bennett LE, Aguas P, Woonton BW (2009) Effects of UV-C, red light and sun light on the carotenoid content and physical qualities of tomatoes during post-harvest storage. Food Chem 115(2):495–500.  https://doi.org/10.1016/j.foodchem.2008.12.042 CrossRefGoogle Scholar
  44. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real- time quantitative PCR and the 2−∆∆cp method. Methods 25(4):402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  45. Lopez-Corcolesm H, Brasa-Ramos A, Montero-Garcia F, Romero-Valverde M, Montero-Riquelme F (2015) Phenological growth stages of saffron plant (Crocus sativus L.) according to the BBCH Scale. Span J Agric Res 13(3):e09sc01.  https://doi.org/10.5424/sjar/2015133-7340 CrossRefGoogle Scholar
  46. Matthews PD, Luo R, Wurtzel ET (2003) Maize phytoene desaturase and zetacarotene desaturase catalyze a poly-Z desaturation pathway: implications for genetic engineering of carotenoid content among cereal crops. J Exp Bot 54:2215–2230.  https://doi.org/10.1093/jxb/erg235 CrossRefPubMedGoogle Scholar
  47. Mir JI, Ahmed N, Wafai AH, Qadri RA (2012) Relative expression of CsZCD gene and apocarotenoid biosynthesis during stigma development in Crocus sativus L. Physiol Mol Biol Plants 18(4):371–375.  https://doi.org/10.1007/s12298-012-0131-9 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Moraga AR, Nohales PF, Perez JA, Gomez-Gomez L (2004) Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas. Planta 219(6):955–966.  https://doi.org/10.1007/s00425-004-1299-1 CrossRefPubMedGoogle Scholar
  49. Moraga AR, Rambla JL, Ahrazem O, Granell A, Gomez-Gomez L (2009) Metabolite and target transcript analyses during Crocus sativus stigma development. Phytochemistry 70(8):1009–1016.  https://doi.org/10.1016/j.phytochem.2009.04.022 CrossRefPubMedGoogle Scholar
  50. Nagatoshi M, Terasaka K, Owaki M, Sota M, Inukai T, Nagatsu A, Mizukami H (2012) UGT75L6 and UGT94E5 mediate sequential glucosylation of crocetin to crocin in Gardenia jasminoides. FEBS Lett 586(7):1055–1061.  https://doi.org/10.1016/j.febslet.2012.03.003 CrossRefPubMedGoogle Scholar
  51. Nambara E, Marion-Poll A (2003) ABA action and interactions in seeds. Trends Plant Sci 8(5):213–217.  https://doi.org/10.1016/S1360-1385(03)00060-8 CrossRefPubMedGoogle Scholar
  52. Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8(1):68–82.  https://doi.org/10.1016/j.molp.2014.12.007 CrossRefPubMedGoogle Scholar
  53. Oromi MJ (1992) Biologia de Crocus sativus L. y factores agroclimaticos que incidences el elendimiento y epoca de floracion de su cultivo en La Mancha. Doctoral thesis, Universidad de Navarra, Pamplona, SpainGoogle Scholar
  54. Pandey D, Pandey VS, Srivastava AP (1974) A note on the effect of the size of corms on the sprouting and flowering of saffron. Progress Hortic 6(2–3):89–92Google Scholar
  55. Panneerselvam R, Jaleel CA, Somasundaram R, Sridharan R, Gomathinayagam M (2007) Carbohydrate metabolism in Dioscorea esculenta (Lour.) Burk. tubers and Curcuma longa L. rhizomes during two phases of dormancy. Colloids Surf B Biointerfaces 59(1):59–66.  https://doi.org/10.1016/j.colsurfb.2007.04.006 CrossRefPubMedGoogle Scholar
  56. Poggi LM (2009) Problematicas y nuevas perspectivas tecnologicas para la produccion de azafran. Horticultura Argentina 28:39–62Google Scholar
  57. Poggi LM, Portella,AJ, Pontin, MA, Molina RV (2010) Corm size and incubation effects on time to flowering and threads yield and quality in saffron production in Argentina. Acta Hortic 850: 193–198.  https://doi.org/10.17660/ActaHortic.2010.850.32
  58. Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260.  https://doi.org/10.1038/nature02081 CrossRefPubMedGoogle Scholar
  59. Rodriguez-Concepcion M, Stange C (2013) Biosynthesis of carotenoids in carrot: an underground story comes to light. Arch Biochem Biophys 539(2):110–116.  https://doi.org/10.1016/j.abb.2013.07.009 CrossRefPubMedGoogle Scholar
  60. Rossel JB, Wilson IW, Pogson BJ (2002) Global changes in gene expression in response to high light in Arabidopsis. Plant Physiol 130(3):1109–1120.  https://doi.org/10.1104/pp.005595 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Rubio A, Fernandez JA, Gomez LG (2004) Biosynthesis of carotenoids in saffron. Acta Hortic 650:99–107.  https://doi.org/10.17660/ActaHortic.2004.650.10 CrossRefGoogle Scholar
  62. Rubio A, Rambla JL, Santaella M, Gomez MD, Orzaez D, Granell A, Gomez-Gomez L (2008) Cytosolic and plastoglobule-targeted carotenoid dioxygenases from Crocus sativus are both involved in beta-ionone release. J Biol Chem 283(36):24816–24825.  https://doi.org/10.1074/jbc.M804000200 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rubio-Moraga A, Ahrazem O, Perez-Clemente RM, Gomez-Cadenas A, Yoneyama K, Lopez-Raez JA, Molina RV, Gomez-Gomez LL (2014) Apical dominance in saffron and the involvement of the branching enzymes CCD7 and CCD8 in the control of bud sprouting. BMC Plant Biol 14:171.  https://doi.org/10.1186/1471-2229-14-171 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ruiz-Sola MA, Rodriguez-Concepcion M (2012) Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book 10:e0158.  https://doi.org/10.1199/tab.0158 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Simkin AJ, Zhu C, Kuntz M, Sandmann G (2003a) Light-dark regulation of carotenoid biosynthesis in pepper (Capsicum annuum) leaves. J Plant Physiol 160(5):439–443.  https://doi.org/10.1078/0176-1617-00871 CrossRefPubMedGoogle Scholar
  66. Simkin AJ, Laboure AM, Kuntz M, Sandmann G (2003b) Comparison of carotenoid content, gene expression and enzyme levels in tomato (Lycopersicon esculentum) leaves. Z Naturforsch C 58(5–6):371–380.  https://doi.org/10.1515/znc-2003-5-615 CrossRefPubMedGoogle Scholar
  67. Tabassum N, Hamdani M (2014) Plants used to treat skin diseases. Pharmacogn Rev 8(15):52–60.  https://doi.org/10.4103/0973-7847.125531 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Tarantilis PA, Tsoupras G, Polissiou M (1995) Determination of saffron (Crocus sativus L.) components in crude plant extracts using high performance liquid chromatography–UV–Vis photodiode-array detection mass spectrometry. J Chromatogr A 699:107–118.  https://doi.org/10.1016/0021-9673(95)00044-N CrossRefPubMedGoogle Scholar
  69. Tookalloo MR, Rashed Mohassel MH, Mollafilabi A (2010) The effect of planting date, corm weight and gibberellin concentration on quantity and quality characteristics of saffron. Acta Hortic 850:189–192.  https://doi.org/10.17660/ActaHortic.2010.850.31 CrossRefGoogle Scholar
  70. Vernoux T, Besnard F, Traas J (2010) Auxin at the shoot apical meristem. Cold Spring Harb Perspect Biol 2(4):a001487.  https://doi.org/10.1101/cshperspect.a001487 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Von Lintig J, Welsch R, Bonk M, Giuliano G, Batschauer A, Kleinig H (1997) Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings. Plant J 12(3):625–634.  https://doi.org/10.1046/j.1365-313X.1997.d01-16.x CrossRefGoogle Scholar
  72. Yang L, Xu M, Koo Y, He J, Poethig RS (2013) Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. eLife 2:e00260.  https://doi.org/10.7554/eLife.00260 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Genome Research Laboratory, School of BiotechnologyUniversity of JammuJammuIndia

Personalised recommendations