Advertisement

Protoplasma

, Volume 256, Issue 1, pp 3–11 | Cite as

Morphology of ovary and spermathecae of the parasitoid Eibesfeldtphora tonhascai Brown (Diptera: Phoridae)

  • Cliver Fernandes Farder-GomesEmail author
  • Helen Cristina Pinto Santos
  • Marco Antonio Oliveira
  • José Cola Zanuncio
  • José Eduardo SerrãoEmail author
Original Article

Abstract

Eibesfeldtphora tonhascai (Diptera: Phoridae) is a parasitoid of leaf-cutting ants and a potential biological control agent against these insect pests. This study describes the morphology of the ovary and spermatheca of E. tonhascai. The female reproductive tract of this parasitoid has a pair of meroistic polytrophic ovaries, two lateral oviducts that open into a common oviduct, an elongated accessory gland, and two spermathecae. Young oocytes are small and spherical, and their size increases as yolk is stored in the cytoplasm. This process is followed by chorion production by follicular cells. Mature oocytes are elliptical or torpedo-shaped. The reservoir wall of the spermatheca has type III glandular cells with cytoplasm rich in free ribosomes, rough endoplasmic reticulum, and secretory vesicles. The apical surface of these cells has microvilli associated with mitochondria. The reservoir lumen is lined by a cuticle and filled with spermatozoa. This is the first report of the ovary and spermatheca morphology of E. tonhascai and contributes to the comprehension of the reproductive biology of this parasitoid of leaf-cutting ants.

Keywords

Leaf-cutting ants Parasitoid Polytrophic ovary Female reproductive tract 

Notes

Acknowledgements

We thank the Núcleo de Microscopia e Microanálise (NMM-UFV) for the technical assistance and H&J Editing Services, Brazil, for the English revision. We also thank the Brazilian agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support.

Funding

This study was funded by the Brazilian research agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq (grant number: 3015165/2013-5), Coordenação de Aperfeiçoamento de Pessoal de Nível Supeiror CAPES and Fundação de Amparo à Pesquisa do Estado de Minas Gerais FAPEMIG (grant number: APQ-00508-16).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights and informed consent

All procedures performed in studies involving animals were in accordance with ethical standards of the institution or practice at which the studies were conducted.

References

  1. Adham FK, Mehlhorn H, El-Basheir ZM, Yamany AS (2009) Light and electron microscopic studies on the development of the ovaries of Culex pipiens quinquefasciatus (Say) (Diptera: Culicidae). Parasitol Res 105:939–948.  https://doi.org/10.1007/s00436-009-1484-z CrossRefGoogle Scholar
  2. Bader CA, Williams CR (2012) Mating, ovariole number and sperm production of the dengue vector mosquito Aedes aegypti (L.) in Australia: broad thermal optima provide the capacity for survival in a changing climate. Physiol Entomol 37:136–144.  https://doi.org/10.1111/j.1365-3032.2011.00818.x CrossRefGoogle Scholar
  3. Bangham J, Chapman T, Smith HK, Partridge L (2003) Influence of female reproductive anatomy on the outcome of sperm competition in Drosophila melanogaster. Proc R Soc Lond B 270:523–530.  https://doi.org/10.1098/rspb.2002.2237 CrossRefGoogle Scholar
  4. Belles X, Piulachs MD (2015) Ecdysone signalling and ovarian development in insects: from stem cells to ovarian follicle formation. Biochim Biophys Acta 1849:181–186.  https://doi.org/10.1016/j.bbagrm.2014.05.025 CrossRefGoogle Scholar
  5. Benner DB (1985) Oocyte development and fecundity in Megaselia scalaris (Phoridae: Diptera). Int J Entomol 27:280–288Google Scholar
  6. Bergland AO, Genissel A, Nuzhdin SV, Tatar M (2008) Quantitative trait loci affecting phenotypic plasticity and the allometric relationship of ovariole number and thorax length in Drosophila melanogaster. Genetics 180:567–582.  https://doi.org/10.1534/genetics.108.088906 CrossRefGoogle Scholar
  7. Bownes M, Ronaldson E, Mauchline D, Martinez A (1993) Regulation of vitellogenesis in Drosophila. Int J Ins Morphol Embryol 22:349–367.  https://doi.org/10.1016/0020-7322(93)90019-W CrossRefGoogle Scholar
  8. Bünning J (1994) The insect ovary: ultrastructure, previtellogenic growth and evolution. Chapman and Hall, LondonCrossRefGoogle Scholar
  9. Busch H (1974) The cell nucleus: Volume I. Academic Press, New YorkGoogle Scholar
  10. Chaiwong T, Sukontason K, Chaisri U, Kuntalue B, Vogtsberger RC, Sukontason KL (2012) Ovarian ultrastructure and development of the blow fly, Chrysomya megacephala (Diptera: Calliphoridae). Int J Parasitol Res 4:65–70.  https://doi.org/10.1155/2011/690863 CrossRefGoogle Scholar
  11. Clements AN, Potter SA (1967) The fine structure of the spermathecae and their ducts in the mosquito Aedes aegypti. J Ins Physiol 13:1825–1836.  https://doi.org/10.1016/0022-1910(67)90018-2 CrossRefGoogle Scholar
  12. Cooley L, Therkauf WE (1994) Cytoskeletal functions during Drosophila oogenesis. Science 266:590–596.  https://doi.org/10.1126/science.7939713 CrossRefGoogle Scholar
  13. Cruz-Landim C, Serrão JE (2002) Ultrastructure of the spermathecal gland of Melipona bicolor Lep. (Hymenoptera, Apinae, Meliponini). Braz J Morphol Sci 19:9–16Google Scholar
  14. De Loof A, Geysen J, Cardoen J, Verachtert B (1990) Comparative developmental physiology and molecular cytology of the polytrophic ovarian follicles of the blow fly Sarcophaga bullata and the fruit fly Drosophila melanogaster. Comp Biochem Physiol 96:309–321CrossRefGoogle Scholar
  15. den Boer SPA, Boomsma JJ, Baer B (2009) Honey bee males and queens use glandular secretions to enhance sperm viability before and after storage. J Ins Physiol 55:538–543.  https://doi.org/10.1016/j.jinsphys.2009.01.012 CrossRefGoogle Scholar
  16. Farder-Gomes CF, Oliveira MA, Gonçalves PL, Gontijo LM, Zanuncio JC, Bragança MAL, Pires EM (2016) Reproductive ecology of phorid parasitoids in relation to the head size of leaf-cutting ants Atta sexdens Forel. Bull Entomol Res 107:487–492.  https://doi.org/10.1017/S0007485316001073 CrossRefGoogle Scholar
  17. Fritz AH, Turner FR (2002) A light and electron microscopical study of the spermathecae and ventral receptacle of Anastrepha suspensa (Diptera: Tephritidae) and implications in female influence of sperm storage. Arthropod Struct Dev 30:293–313.  https://doi.org/10.1016/S1467-8039(01)00038-X CrossRefGoogle Scholar
  18. Gotoh A, Billen J, Hashin R, Ito F (2008) Comparison of spermatheca morphology between reproductive and non-reproductive females in social wasps. Arthropod Struct Dev 37:199–209.  https://doi.org/10.1016/j.asd.2007.11.001 CrossRefGoogle Scholar
  19. Green DA II, Extavour CG (2012) Convergent evolution of a reproductive trait through distinct developmental mechanisms in Drosophila. Dev Biol 372:120–130.  https://doi.org/10.1016/j.ydbio.2012.09.014 CrossRefGoogle Scholar
  20. Guild GM, Connelly PS, Shaw MK, Tilney LG (1997) Actin filament cables in Drosophila nurse cells are composed of modules that slide passively past one another during dumping. J Cell Biol 138:783–797.  https://doi.org/10.1083/jcb.138.4.783 CrossRefGoogle Scholar
  21. Ilango K (2005) Structure and function of the spermathecal complex in the phlebotomine sandfly Phlebotomus papatasi Scopoli (Diptera: Psychodidae): I. Ultrastructure and histology. J Biosci 30:711–731.  https://doi.org/10.1007/BF02703571 CrossRefGoogle Scholar
  22. Jaglarz MK, Kubrakiewicz J, Bilinski SM (2010) A novel pattern of follicular epithelium morphogenesis in higher dipterans. Zoology 113:91–99.  https://doi.org/10.1016/j.zool.2009.07.002 CrossRefGoogle Scholar
  23. Klenk M, Koeniger G, Koeniger N, Fasold H (2004) Proteins in spermathecal gland secretion and spermathecal fluid and the properties of a 29 kDa protein in queens of Apis mellifera. Apidologie 35:371–381.  https://doi.org/10.1051/apido:2004029 CrossRefGoogle Scholar
  24. Klingenberg M (2008) The ADP and ATP transport in mitochondria and its carrier. Biochim Biophys Acta 1778:1978–2021.  https://doi.org/10.1016/j.bbamem.2008.04.011 CrossRefGoogle Scholar
  25. Koteja J, Pyka-Fosciak G, Vogelgesang M, Szklarzewicz T (2003) Structure of the ovary in Steingelia (Sternorrhyncha: Coccinea), and its phylogenetic implications. Arthropod Struct Dev 32:247–256.  https://doi.org/10.1016/S1467-8039(03)00046-X CrossRefGoogle Scholar
  26. Kubrakiewicz J, Jablonska A, Mazurkiewicz M, Bilinski SM (2003) Differentiation and diversification of the follicular cells in flies: insight from the studies of the lower brachycerans’ ovaries. Genesis 36:214–224.  https://doi.org/10.1016/j.tice.2005.06.001 CrossRefGoogle Scholar
  27. Mahajan-Miklos S, Cooley L (1994) Intercellular cytoplasm transport during Drosophila oogenesis. Dev Biol 165:336–351.  https://doi.org/10.1006/dbio.1994.1257 CrossRefGoogle Scholar
  28. Martins GF, Serrão JE (2002) A comparative study of the spermatheca in bees (Hymenoptera: Apoidea). Sociobiology 40:711–720Google Scholar
  29. Martins GF, Serrão JE (2004) A comparative study of the ovaries in some Brazilian bees (Hymenoptera, Apoidea). Pap Avul Zool 44:45–53.  https://doi.org/10.1590/S0031-10492004000300001 CrossRefGoogle Scholar
  30. Mazurkiewicz M, Kubrakiewicz J (2008) Follicular cell differentiation in polytrophic ovaries of a moth midge, Tinearia alternata. Int J Dev Biol 52:267–278.  https://doi.org/10.1387/ijdb.072318mm CrossRefGoogle Scholar
  31. Mazurkiewicz-Kania M, Jędrzejowska I, Kubrakiewicz J (2012) Differences in the relative timing of developmental events during oogenesis in lower dipterans (Nematocera) reveal the autonomy of follicular cells’ differentiation program. Arthropod Struct Dev 41:65–70.  https://doi.org/10.1016/j.asd.2011.07.004 CrossRefGoogle Scholar
  32. Ngernsiri L, Piyajaraprasert W, Wisoram W, Merrit DJ (2015) Structure of the female reproductive system of the lac insect, Kerria chinensis (Sternorrhyncha, Coccoidea: Kerridae). Acta Zool 96:312–318.  https://doi.org/10.1111/azo.12078 CrossRefGoogle Scholar
  33. Olufemis A, Fadamiro HY (2016) Comparing longevity of Pseudacteon species of different sizes: effect of sugar feeding. Physiol Entomol 41:260–266.  https://doi.org/10.1111/phen.12151 CrossRefGoogle Scholar
  34. Papantonis A, Swevers L, Iastrou K (2015) Chorion genes: a landscape of their evolution, structure, and regulation. Annu Rev Ent 60:177–194.  https://doi.org/10.1146/annurev-ento-010814-020810 CrossRefGoogle Scholar
  35. Pascini TV, Martins GV (2017) The insect spermatheca: an overview. Zoology 121:56–71.  https://doi.org/10.1016/j.zool.2016.12.001 CrossRefGoogle Scholar
  36. Pascini TV, Ramalho-Ortigão JM, Martins GF (2012) Morphological and morphometrical assessment of spermathecae of Aedes aegypti females. Mem Inst Oswaldo Cruz 107:705–712.  https://doi.org/10.1590/S0074-02762012000600001 CrossRefGoogle Scholar
  37. Pascini TV, Ramalho-Ortigão JM, Martins GF (2013) The fine structure of the spermatheca in Anopheles aquasalis (Diptera: Culicidae). Ann Ent Soc Am 106:857–867.  https://doi.org/10.1603/AN13079 CrossRefGoogle Scholar
  38. Pearson JR, Zurita F, Tomás-Gallardo L, Díaz-Torres A, Díaz de la Loza MDC, Franze K, Martín-Bermudo MD, González-Reyes A (2016) ECM-Regulator timp is required for stem cell niche organization and cyst production in the Drosophila ovary. PLoS Genet 12:1–25.  https://doi.org/10.1371/journal.pgen.1005763 CrossRefGoogle Scholar
  39. Porter SD (1998) Biology and behavior of Pseudacteon decapitating flies (Diptera: Phoridae) that parasitize Solenopsis fire ants (Hymenoptera: Formicidae). Fla Entomol 81:292–309.  https://doi.org/10.2307/3495920 CrossRefGoogle Scholar
  40. Porter SD, Williams DF, Patterson RS (1997) Rearing the decapitating fly Pseudacteon tricuspis (Diptera: Phoridae) in imported fire ants (Hymenoptera: Formicidae) from the United States. J Econ Entomol 90:135–138.  https://doi.org/10.1093/jee/90.1.135 CrossRefGoogle Scholar
  41. Raikhel AS, Dhadialla TS (1992) Accumulation of yolk proteins in insect oocytes. Annu Rev Ent 37:217–251.  https://doi.org/10.1146/annurev.en.37.010192.001245 CrossRefGoogle Scholar
  42. Ronnau M, Azevedo DO, Fialho MCQ, Gonçlaves WG, Zanuncio JC, Serrão JE (2016) Changes in follicular cells architecture during vitellogenin transport in the ovary of social Hymenoptera. Protoplasma 253:815–820.  https://doi.org/10.1007/s00709-015-0843-0 CrossRefGoogle Scholar
  43. Santos DC, Gregório EA (2006) Morphological aspects of cluster formation in the germarium of the sugarcane borer Diatraea saccharalis Fabricius (Lepidoptera: Pyralidae). Neotrop Entomol 35:644–653.  https://doi.org/10.1590/S1519-566X2006000500012 CrossRefGoogle Scholar
  44. Sarikaya DP, Belay AB, Ahuja A, Dorta A, Green DA II, Extavour CG (2012) The roles of cell size and cell number in determining ovariole number in Drosophila. Dev Biol 363:279–289.  https://doi.org/10.1016/j.ydbio.2011.12.017 CrossRefGoogle Scholar
  45. Seidelmann K, Helbing C, Göbeler N, Weinert H (2016) Sequential oogenesis is controlled by an oviduct factor in the locusts Locusta migratoria and Schistocerca gregaria: overcoming the doctrine that patency in follicle cells is induced by juvenile hormone. J Ins Physiol 90:1–7.  https://doi.org/10.1016/j.jinsphys.2016.03.008 CrossRefGoogle Scholar
  46. Souza EA, Lisboa LCO, Serrão JE (2015) Morphology of the Spermathecae of Leptoglossus zonatus (Heteroptera: Coreidae). Ann Ent Soc Am 109:1–6.  https://doi.org/10.1093/aesa/sav097 Google Scholar
  47. Tonhasca A Jr (1996) Interactions between a parasitic fly, Neodohrniphora declinata (Diptera: Phoridae), and its host, the leaf-cutting ant Atta sexdens rubropilosa (Hymenoptera: Formicidae). Ecotropica 2:157–164Google Scholar
  48. Trougakos IP, Lamnissou K, Margaritis LK (1999) Biochemical and immunocytochemical analysis of vitellogenesis in the olive fruit fly Dacus (Bactrocera) oleae (Diptera: Tephritidae). Cell Biol Int 23:417–429.  https://doi.org/10.1006/cbir.1999.0380 CrossRefGoogle Scholar
  49. Wolfner MF (2011) Precious essences: female secretions promote sperm storage in Drosophila. PLoS Biol 9:1–4.  https://doi.org/10.1371/journal.pbio.1001191 CrossRefGoogle Scholar
  50. Wu X, Tanwar PS, Raftery LA (2008) Drosophila follicle cells: morphogenesis in an eggshell. Semin Cell Dev Biol 19:271–282.  https://doi.org/10.1016/j.semcdb.2008.01.004 CrossRefGoogle Scholar
  51. Zacaro AA, Porter SD (2003) Female reproductive system of the decapitating fly Pseudacteon wasmanni Schmitz (Diptera: Phoridae). Arthropod Struct Dev 31:329–337.  https://doi.org/10.1016/S1467-8039(02)00049-X CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de EntomologiaUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais campus CongonhasCongonhasBrazil
  3. 3.Instituto de Ciências Biológicas e da SaúdeUniversidade Federal de Viçosa campus FlorestalFlorestalBrazil
  4. 4.Departamento de Biologia GeralUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations