, Volume 256, Issue 1, pp 105–116 | Cite as

Morphological responses to nitrogen stress deficiency of a new heterotrophic isolated strain of Ebro Delta microbial mats

  • Eduard Villagrasa
  • Neus Ferrer-Miralles
  • Laia Millach
  • Aleix Obiol
  • Jordi Creus
  • Isabel Esteve
  • Antonio SoléEmail author
Original Article


Microorganisms living in hypersaline microbial mats frequently form consortia under stressful and changing environmental conditions. In this paper, the heterotrophic strain DE2010 from a microalgae consortium (Scenedesmus sp. DE2009) from Ebro Delta microbial mats has been phenotypically and genotypically characterized and identified. In addition, changes in the morphology and biomass of this bacterium in response to nitrogen deficiency stress have been evaluated by correlative light and electron microscopy (CLEM) combining differential interference contrast (DIC) microscopy and transmission electron microscopy (TEM) and scanning electron microscopy (SEM). These isolated bacteria are chemoorganoheterotrophic, gram-negative, and strictly aerobic bacteria that use a variety of amino acids, organic acids, and carbohydrates as carbon and energy sources, and they grow optimally at 27 °C in a pH range of 5 to 9 and tolerate salinity from 0 to 70‰ NaCl. The DNA-sequencing analysis of the 16S rRNA and nudC and fixH genes and the metabolic characterization highlight that strain DE2010 corresponds to the species Ochrobactrum anthropi. Cells are rod shaped, 1–3 μm in length, and 0.5 μm wide, but under deprived nitrogen conditions, cells are less abundant and become more round, reducing their length and area and, consequently, their biomass. An increase in the number of pleomorphic cells is observed in cultures grown without nitrogen using different optical and electron microscopy techniques. In addition, the amplification of the fixH gene confirms that Ochrobactrum anthropi DE2010 has the capacity to fix nitrogen, overcoming N2-limiting conditions through a nifH-independent mechanism that is still unidentified.


Stress responses Ochrobactrum anthropi Nitrogen fixation CLEM fixMicrobial mats 



We express our thanks for the assistance of the staff of Servei de Micròscopia (, in particular Dr. Alejandro Sanchez-Chardi and Dr. Emma Rossinyol, and the Servei de genòmica i bioinformàtica (, both at the Universitat Autònoma de Barcelona and CIBER-BBN, as well as Cristina Sosa. We appreciate the valuable comments and suggestions of Estefania Solsona.

Funding information

This research was supported by the following grants: FONCICYT (Ref. 95887), Ministerio de Economía y Competitividad (Refs. CTQ2014-54553-C3-2-R and CGL2008-01891), and UAB postgraduate scholarship to EV.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Aquilantia L, Favilib F, Clementi F (2004) Comparison of different strategies for isolation and preliminary identification of Azotobacter from soil samples. Soil Biol Biochem 36:1475–1483Google Scholar
  2. Bal AK, Shantharam S, Verma DPS (1980) Changes in the outer cell wall of Rhizobium during development of root nodule symbiosis in soybean. Can J Microbiol 26:1096–1103Google Scholar
  3. Batut J, Andersson SG, O’Callaghan D (2004) The evolution of chronic infection strategies in the alphaproteobacteria. Nat Rev Microbiol 2:993–945Google Scholar
  4. Berrendero-Gómez E, Johansen JR, Kaštovský J, Bohunická M, Čapková K (2016) Macrochaetegen. nov. (Nostocales, Cyanobacteria), a taxon morphologically and molecularly distinct from Calothrix. J Phycol 52:638–655Google Scholar
  5. Black M, Moolhuijzen P, Chapman B, Barrero R, Howieson J, Hungria M, Bellgard M (2012) The genetics of symbiotic nitrogen fixation: comparative genomics of 14 rhizobia strains by resolution of protein clusters. Genes 3(1):138–166Google Scholar
  6. Burgos A, Maldonado J, De los Rios A, Solé A, Esteve I (2013) Effect of copper and lead on two consortia of phototrophic microorganisms and their capacity to sequester metals. Aquat Toxicol 140–141:324–336Google Scholar
  7. Cahová H, Winz ML, Höfer K, Nübel G, Jäschke A (2014) NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs. Nature 519:374–377Google Scholar
  8. Chakravarty R, Banerjee PC (2008) Morphological changes in an acidophilic bacterium induced by heavy metals. Extremophiles 12:279–284Google Scholar
  9. Chen W, de Faria S, James E, Elliott G, Lin K, Chou J, Sheu S, Cnockaert M, Sprent J, Vandamme P (2007) Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int J Syst Evol Microbiol 57(5):1055–1059Google Scholar
  10. Cole JJ (1982) Interactions between bacteria and algae in aquatic ecosystems. Annu Rev Ecol Syst 13(1):291–314Google Scholar
  11. Cole JK, Hutchison JR, Renslow RS, Kim YM, Chrisler WB, Engelmann HE, Dohnalkova AC, Hu D, Metz TO, Fredrickson JK, Lindemann SR (2014a) Phototrophic biofilm assembly in microbial-mat-derived unicyanobacterial consortia: model systems for the study of autotroph-heterotroph interactions. Front Microbiol 5:109Google Scholar
  12. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014b) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642Google Scholar
  13. Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93Google Scholar
  14. Cushnie TPT, O’Driscoll NH, Lamb AJ (2016) Morphological and ultrastructural changes in bacterial cells as an indicator of antibacterial mechanism of action. Cell Mol Life Sci 73:4471–4492Google Scholar
  15. Dalgaard P, Ross T, Kamperman L, Neumeyer K, McMeekin TA (1994) Estimation of bacterial growth rates from turbidimetric and viable count data. Int J Food Microbiol 23(3–4):391–404Google Scholar
  16. Diestra E, Solé A, Martí M, Garcia De Oteyza T, Grimalt JO, Esteve I (2005) Characterization of an oil-degrading Microcoleus consortium by means of confocal scanning microscopy, scanning electron microscopy and transmission electron microscopy. Scanning 27:176–180Google Scholar
  17. Diestra E, Esteve I, Burnat M, Maldonado J, Sole A (2007) Isolation and characterization of heterotrophic bacterium able to grow in different environmental stress conditions, including crude oil and heavy metals. In: A Menendez-Vilas (Ed) Communicating Current Research and Educational Topics in Applied Microbiology, 7th edn. pp 90–99Google Scholar
  18. Doetsch RN (1981) Determinative methods of light microscopy. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington, D.C., pp 21–33Google Scholar
  19. Edgren T, Nordlund S (2004) The fixABCX genes in Rhodospirillum rubrum encode a putative membrane complex participating in electron transfer to nitrogenase. J Bacteriol 186:2052–2060Google Scholar
  20. Esteve I, Martínez-Alonso M, Mir J, Guerrero R (1992) Distribution, typology and structure of microbial mat communities in Spain: a preliminary study. Limnetica 8:185–195Google Scholar
  21. Esteve I, Ceballos D, Martínez-Alonso M, Gaju N, Guerrero R (1994) Development of versicolored microbial mats: succession of microbial communities. In: Stal L.J., Caumette P. (eds) Microbial Mats. NATO ASI Series (Series G: Ecological Sciences), vol 35. Springer, Berlin, HeidelbergGoogle Scholar
  22. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791Google Scholar
  23. Guerrero R, Urmeneta J, Rampone G (1993) Distribution of types of microbial mats at the Ebro Delta, Spain. Biosystems 31:135–144Google Scholar
  24. Guerrero R, Haselton A, Solé M, Wier A, Margulis L (1999) Titanospirillum velox: a huge, speedy, sulfur-storing spirillum from Ebro Delta microbial mats. Proc Natl Acad Sci U S A 96(20):11584–11588Google Scholar
  25. Hall BG, Acar H, Nandipati A, Barlow M (2014) Growth rates made easy. Mol Biol Evol 31(1):232–238Google Scholar
  26. Hamouda T, Shih AY, Baker JR Jr (2002) A rapid staining technique for the detection of the initiation of germination of bacterial spores. Lett Appl Microbiol 34:86–90Google Scholar
  27. Haynes JG, Czymmek KJ, Carlson CA, Veereshlingam H, Dickstein RD, Sherrier J (2004) Rapid analysis of legume root nodule development using confocal microscopy. New Phytol 163:661–668Google Scholar
  28. Holmes B, Popoff M, Kiredjian M, Kersters K (1988) Ochrobactrum anthropi gen. nov., sp. nov. from human clinical specimens and previously known as group Vd. Int J Syst Bacteriol 38(4):406–416Google Scholar
  29. Holt JG, Krieg RN, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, BaltimoreGoogle Scholar
  30. Høvik Hansen G, Sørheim R (1991) Improved method for phenotypical characterization of marine bacteria. J Microbiol Meth 13:231–241Google Scholar
  31. Huber B, Scholz HC, Kámpfer P, Falsen E, Langer S, Busse HJ (2010) Ochrobactrum pituitosum sp. nov., isolated from an industrial environment. Int J Syst Evol Microbiol 60:321–326Google Scholar
  32. Imran A, Hafeez FY, Frühling A, Schumann P, Malik KA, Stackebrandt E (2010) Ochrobactrum ciceri sp. nov., isolated from nodules of Cicer arietinum. Int J Syst Evol Microbiol 60:1548–1553Google Scholar
  33. Jukes TH, Cantor CR (1969) Evolution of protein molecules. Academic Press, New York, pp 21–132Google Scholar
  34. Justice SS, Hunstad DA, Cegelski L, Hultgren SJ (2008) Morphological plasticity as a bacterial survival strategy. Nat Rev Microbiol 6:162–168Google Scholar
  35. Kämpfer P, Scholz HC, Huber B, Falsen E, Busse HJ (2007) Ochrobactrum haematophilum sp. nov. and Ochrobactrum pseudogrignonense sp. nov., isolated from human clinical specimens. Int J Syst Evol Microbiol 57:2513–2518Google Scholar
  36. Kern WV, Oethinger M, Marre R, Kaufhold A, Rozdzinski E (1993) Ochrobactrum anthropi bacteremia: report of four cases and short review. Infection 21(5):306–310Google Scholar
  37. Kulkarni G, Gohil K, Misra V, Kakrani AL, Misra PS, Patole M, Shouche Y, Dharne M. (2017) Multilocus sequence typing of Ochrobactrum spp. isolated from gastric niche. Volume 10, Issue 2, 201–210Google Scholar
  38. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874Google Scholar
  39. Lebuhn M, Bathe S, Achouak W, Hartmann A, Heulin T, Schloter M (2006) Comparative sequence analysis of the internal transcribed spacer 1 of Ochrobactrum species. System Appl Microbiol 29:265–275Google Scholar
  40. Maldonado J, Diestra E, Huang L, Domènech AM, Villagrasa E, Puyen ZM, Duran R, Esteve I, Solé A (2010) Isolation and identification of a bacterium with high tolerance to lead and copper from a marine microbial mat in Spain. Ann Microbiol 60(1):113–120Google Scholar
  41. Martínez-Alonso M, Mir J, Caumette P, Gaju N, Guerrero R, Esteve I (2004) Distribution of phototrophic populations and primary production in a microbial mat from the Ebro Delta, Spain. Int Microbiol 7(1):19–25Google Scholar
  42. Meng X, Yan D, Long X, Wang C, Liu Z, Rengel Z (2014) Colonization by endophytic Ochrobactrum anthropi Mn1 promotes growth of Jerusalem artichoke. Microb Biotechnol 7:601–610Google Scholar
  43. Millach L, Solé A, Esteve I (2015) Role of Geitlerinema sp. DE2011 and Scenedesmus sp. DE2009 as bioindicators and immobilizers of chromium in a contaminated natural environment. Biomed Res Int Article ID 519769Google Scholar
  44. Millach L, Obiol A, Solé A, Esteve I (2017) A novel method to analyse in vivo the physiological state and cell viability of phototrophic microorganisms by confocal laser scanning microscopy using a dual laser. J Microsc-Oxford 268(1):53–65Google Scholar
  45. Milloning G (1961) A modified procedure for lead staining of thin sections. J Biophys Biochem Cytol 11:736–739Google Scholar
  46. Mir J, Martínez-Alonso M, Esteve I, Guerrero R (1991) Vertical stratification and microbial assemblage of a microbial mat in Ebro Delta (Spain). FEMS Microl Ecol 86:59–68Google Scholar
  47. O’Toole RF, Johari BM, Mac Aogáin M, Rogers TR, Bower JE, Basu I, Freeman JT (2014) Draft genome sequence of the first isolate of extensively drug-resistant Mycobacterium tuberculosis in New Zealand. Gen Announ 2:4–5Google Scholar
  48. Paerl HW (1977) Role of heterotrophic bacteria in promoting N2 fixation by Anabaena in aquatic habitats. Microb Ecol 4(3):215–231Google Scholar
  49. Paerl HW, Pinckney JL, Steppe TF (2000) Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ Microbiol 2(1):11–26Google Scholar
  50. Perkovic M, Kunz M, Endesfelder U, Bunse S, Wigge C, Yu Z, Hodirnau VV, Scheffer MP, Seybert A, Malkusch S, Schuman EM, Heilemann M, Frangakis AS (2014) Correlative light- and electron microscopy with chemical tags. J Struct Biol 186:205–213Google Scholar
  51. Puyen ZM, Villagrasa E, Maldonado J, Esteve I, Solé A (2012) Viability and Biomass Micrococcus luteus DE2008 at Different Salinity Concentrations Determined by specific Fluorochromes and CLSM-Image Analysis. Curr Microbiol 64:75–80Google Scholar
  52. Ramos VMC, Castelo-Branco R, Leão PN, Martins J, Carvalhal-Gomes S, Sobrinho da Silva F, Mendonça Filho JG, Vasconcelos VM (2017) Cyanobacterial diversity in microbial mats from the hypersaline lagoon system of Araruama, Brazil: an in-depth polyphasic study. Front Microbiol 8:1233Google Scholar
  53. Reid RP, Visscher PT, Decho AW, Stolz JF (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406(6799):989–992Google Scholar
  54. Revsbech NP, Jorgensen BB, Blackburn TH, Cohen Y, Steinitz H (1983) Microelectrode studies of the photosynthesis and O2, H2S, and pH profiles of a microbial mat. Limnol Oceanogr 28:1062–1074Google Scholar
  55. Rier ST, Stevenson RJ (2002) Effects of light, dissolved organic carbon, and inorganic nutrients [2pt] on the relationship between algae and heterotrophic bacteria in stream periphyton. Hydrobiologia 489:179–184Google Scholar
  56. Rodríguez-Celma J, Lin WD, Fu GM, Abadía J, López-Millán AF, Schmidt W (2013) Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula. Plant Physiol 162(3):1473–1485Google Scholar
  57. Romano S, Aujoulat F, Jumas-Bilak E, Masnou A, Jeannot JL, Falsen E, Marchandin H, Teyssier C (2009) Multilocus sequence typing supports the hypothesis that Ochrobactrum anthropi displays a human-associated subpopulation. BMC Microbiol 9:267Google Scholar
  58. Sayah RS, Kaneene JB, Johnson Y, Miller R (2005) Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic- and wild-animal fecal samples, human septage, and surface water. Appl Environ Microbiol 71(3):1394–1404Google Scholar
  59. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425Google Scholar
  60. Seufferheld MJ, Alvarez HM, Farias ME (2008) Role of polyphosphates in microbial adaptation to extreme environments. Appl Environ Microbiol 74:5867–5874Google Scholar
  61. Shen H, Niu Y, Xie P, Tao M, Yang X (2011) Morphological and physiological changes in Microcystis aeruginosa as a result of interactions with heterotrophic bacteria. Freshw Biol 56:1065–1080Google Scholar
  62. Solé A, Gaju N, Esteve I (2003) The biomass dynamics of cyanobacteria in an annual cycle determined by confocal laser scanning microscopy. Scanning 25(1):1–7Google Scholar
  63. Stal JL (1995) Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol 131:1–32Google Scholar
  64. Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2011) Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv 29(6):896–907Google Scholar
  65. Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C content biases. Mol Biol Evol 9(4):678–687Google Scholar
  66. Teyssier C, Marchandin H, Jean-Pierre H et al (2005) Molecular and phenotypic features for identification of the opportunistic pathogens Ochrobactrum spp. J Med Microbiol 54(10):945–953Google Scholar
  67. Teyssier C, Marchandin H, Jean-Pierre H, Masnou A, Dusart G, Jumas-Bilak E (2007) Ochrobactrum pseudintermedium sp. nov., a novel member of the family Brucellaceae, isolated from human clinical samples. Int J Syst Evol Microbiol 57:1007–1013Google Scholar
  68. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882Google Scholar
  69. Tripathi A, Verma S, Chowdhury S, Lebuhn M, Gattinger A, Schloter M (2006) Ochrobactrum oryzae sp. nov., an endophytic bacterial species isolated from deep-water rice in India. Int J Syst Evol Microbiol 56(7):1677–1680Google Scholar
  70. Vancová M, Rudenko N, Vaněček J, Golovchenko M, Strnad M, Rego ROM, Tichá L, Grubhoffer L, Nebesářová J (2017) Pleomorphism and viability of the Lyme disease pathogen Borrelia burgdorferi exposed to physiological stress conditions: a correlative cryo-fluorescence and cryo-scanning electron microscopy study. Front Microbiol 8:596Google Scholar
  71. Wang XD, Gu J, Wang T, Bi LJ, Zhang ZP, Cui ZQ, Wei HP, Deng JY, Zhang XE (2011) Comparative analysis of mycobacterial NADH pyrophosphatase isoforms reveals a novel mechanism for isoniazid and ethionamide inactivation. Mol Microbiol 82:1375–1391Google Scholar
  72. Woo SG, Ten LN, Park J, Lee J (2011) Ochrobactrum daejeonense sp. nov., a nitrate-reducing bacterium isolated from sludge of a leachate treatment plant. Int J Syst Evol Microbiol 61:2690–2696Google Scholar
  73. Wrede C, Heller C, Reitner J, Hoppert M (2008) Correlative light/electron microscopy for the investigation of microbial mats from Black Sea Cold Seeps. J Microbiol Meth 73:85–91Google Scholar
  74. Xie B, Bishop S, Stessman D, Wright D, Spalding MH, Halverson LJ (2013) Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria. ISME J 7(8):1544–1555Google Scholar
  75. Young KD (2006) The selective value of bacterial shape. Microbiol Mol Biol Rev 70(3):660–703Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departament de Genètica i Microbiologia, Facultat de BiociènciesUniversitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)MadridSpain

Personalised recommendations