Protoplasma

pp 1–17 | Cite as

Early nodule senescence is activated in symbiotic mutants of pea (Pisum sativum L.) forming ineffective nodules blocked at different nodule developmental stages

  • Tatiana A. Serova
  • Anna V. Tsyganova
  • Viktor E. Tsyganov
Original Article
  • 124 Downloads

Abstract

Plant symbiotic mutants are useful tool to uncover the molecular-genetic mechanisms of nodule senescence. The pea (Pisum sativum L.) mutants SGEFix-1 (sym40), SGEFix-3 (sym26), and SGEFix-7 (sym27) display an early nodule senescence phenotype, whereas the mutant SGEFix-2 (sym33) does not show premature degradation of symbiotic structures, but its nodules show an enhanced immune response. The nodules of these mutants were compared with each other and with those of the wild-type SGE line using seven marker genes that are known to be activated during nodule senescence. In wild-type SGE nodules, transcript levels of all of the senescence-associated genes were highest at 6 weeks after inoculation (WAI). The senescence-associated genes showed higher transcript abundance in mutant nodules than in wild-type nodules at 2 WAI and attained maximum levels in the mutant nodules at 4 WAI. Immunolocalization analyses showed that the ethylene precursor 1-aminocyclopropane-1-carboxylate accumulated earlier in the mutant nodules than in wild-type nodules. Together, these results showed that nodule senescence was activated in ineffective nodules blocked at different developmental stages in pea lines that harbor mutations in four symbiotic genes.

Keywords

Nodulation Symbiosis Symbiosomes Ethylene Sanctions Programmed cell death 

Abbreviations

ABA

Abscisic acid

ACC

1-Aminocyclopropane-1-carboxylate

WAI

Weeks after inoculation

DAI

Days after inoculation

Notes

Acknowledgements

This work was supported by the Russian Science Foundation [grant number 16-16-10035]. The research was performed using equipment of the Core Centrum “Genomic Technologies, Proteomics and Cell Biology” in ARRIAM, and the “Molecular and Cell Technologies” Research Resource Centre at Saint-Petersburg State University. Jennifer Smith, PhD, and Robert McKenzie, PhD, from Edanz Group (www.edanzediting.com/ac) edited the English version of a draft of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest

Supplementary material

709_2018_1246_MOESM1_ESM.pdf (3.9 mb)
ESM 1 (PDF 4038 kb)

References

  1. Banba M, Siddique ABM, Kouchi H, Izui K, Hata S (2001) Lotus japonicus forms early senescent root nodules with Rhizobium etli. Mol Plant-Microbe Interact 14:173–180CrossRefPubMedGoogle Scholar
  2. Berrabah F, Bourcy M, Eschstruth A, Cayrel A, Guefrachi I, Mergaert P, Wen J, Jean V, Mysore KS, Gourion B, Ratet P (2014) A nonRD receptor-like kinase prevents nodule early senescence and defense-like reactions during symbiosis. New Phytol 203:1305–1314CrossRefPubMedGoogle Scholar
  3. Borisov AY, Rozov SM, Tsyganov VE, Morzhina EV, Lebsky VK, Tikhonovich IA (1997) Sequential functioning of Sym-13 and Sym-31, two genes affecting symbiosome development in root nodules of pea (Pisum sativum L.) Mol Gen Genet 254:592–598CrossRefPubMedGoogle Scholar
  4. Borisov AY, Danilova TN, Koroleva TA, Kuznetsova EV, Madsen L, Mofett M, Naumkina TS, Nemankin TA, Ovchinnikova ES, Pavlova ZB, Petrova NE, Pinaev AG, Radutoiu S, Rozov SM, Rychagova TS, Shtark OY, Solovov II, Stougaard J, Tikhonovich IA, Topunov AF, Tsyganov VE, Vasil’chikov AG, Voroshilova VA, Weeden NF, Zhernakov AI, Zhukov VA (2007) Regulatory genes of garden pea (Pisum sativum L.) controlling the development of nitrogen-fixing nodules and arbuscular mycorrhiza: a review of basic and applied aspects. Appl Biochem Microbiol 43:237–243CrossRefGoogle Scholar
  5. Bourcy M, Brocard L, Pislariu CI, Cosson V, Mergaert P, Tadege M, Mysore KS, Udvardi MK, Gourion B, Ratet P (2013) Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions. New Phytol 197:1250–1126CrossRefPubMedGoogle Scholar
  6. Cabeza R, Koester B, Liese R, Lingner A, Baumgarten V, Dirks J, Salinas-Riester G, Pommerenke C, Dittert K, Schulze J (2014) An RNA sequencing transcriptome analysis reveals novel insights into molecular aspects of the nitrate impact on the nodule activity of Medicago truncatula. Plant Physiol 164:400–411CrossRefPubMedGoogle Scholar
  7. Cam Y, Pierre O, Boncompagni E, Hérouart D, Meilhoc E, Bruand C (2012) Nitric oxide (NO): a key player in the senescence of Medicago truncatula root nodules. New Phytol 196:548–560CrossRefPubMedGoogle Scholar
  8. Chua KY, Pankhurst CE, Macdonald P, Hopcroft DH, Jarvis BD, Scott DB (1985) Isolation and characterization of transposon Tn5-induced symbiotic mutants of Rhizobium loti. J Bacteriol 162:335–343PubMedPubMedCentralGoogle Scholar
  9. Chungopast S, Hirakawa H, Sato S, Handa Y, Saito K, Kawaguchi M, Tajima S, Nomura M (2014) Transcriptomic profiles of nodule senescence in Lotus japonicus and Mesorhizobium loti symbiosis. Plant Biotech 31:345–349CrossRefGoogle Scholar
  10. D’haeseleer K, De Keyser A, Goormachtig S, Holsters M (2010) Transcription factor MtATB2: about nodulation, sucrose and senescence. Plant Cell Physiol 51:1416–1424CrossRefPubMedGoogle Scholar
  11. De Zélicourt A, Diet A, Marion J, Laffont C, Ariel F, Moison M (2012) Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence. Plant J 70:220–230CrossRefPubMedGoogle Scholar
  12. Domonkos Á, Kovács S, Gombár A, Kiss E, Horváth B, Kováts GZ, Farkas A, Tóth MT, Ayaydin F, Bóka K, Fodor L, Ratet P, Kereszt A, Endre G, Kaló P (2017) NAD1 controls defense-like responses in Medicago truncatula symbiotic nitrogen fixing nodules following rhizobial colonization in a BacA-independent manner. Genes 8:387CrossRefPubMedCentralGoogle Scholar
  13. van Doorn WG (2011) Classes of programmed cell death in plants, compared to those in animals. J Exp Bot 62:4749–4761CrossRefPubMedGoogle Scholar
  14. Engvild KC (1987) Nodulation and nitrogen fixation mutants of pea, Pisum sativum. Theor Appl Genet 74:711–713CrossRefPubMedGoogle Scholar
  15. Forrest SI, Verma DPS, Dhindsa RS (1991) Starch content and activities of starch-metabolizing enzymes in effective and ineffective root nodules of soybean. Can J Bot 69:697–701CrossRefGoogle Scholar
  16. González EM, Aparicio-Tejo PM, Gordon AJ, Minchin FR, Royuela M, Arrese-Igor C (1998) Water-deficit effects on carbon and nitrogen metabolism of pea nodules. J Exp Bot 49:1705–1714CrossRefGoogle Scholar
  17. González EM, Gálvez L, Arrese-Igor C (2001) Abscisic acid induces a decline in nitrogen fixation that involves leghaemoglobin, but is independent of sucrose synthase activity. J Exp Bot 52:285–293CrossRefPubMedGoogle Scholar
  18. Granell A, Harris N, Pisabarro AG, Carbonell J (1992) Temporal and spatial expression of a thiolprotease gene during pea ovary senescence, and its regulation by gibberellin. Plant J 2:907–915PubMedGoogle Scholar
  19. Guinel FC (2015) Ethylene, a hormone at the center-stage of nodulation. Front Plant Sci 6:1121CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hakoyama T, Niimi K, Yamamoto T, Isobe S, Sato S, Nakamura Y, Tabata S, Kumagai H, Umehara Y, Brossuleit K (2012) The integral membrane protein SEN1 is required for symbiotic nitrogen fixation in Lotus japonicus nodules. Plant Cell Physiol 53:225–236CrossRefPubMedGoogle Scholar
  21. Hernández-Jiménez MJ, Lucas MM, Rosario de Felipe M (2002) Antioxidant defence and damage in senescing lupin nodules. Plant Physiol Biochem 40:645–657CrossRefGoogle Scholar
  22. Hirsch AM, Smith CA (1987) Effects of Rhizobium meliloti nif and fix mutants on alfalfa root nodule development. J Bacteriol 169:1137–1146CrossRefPubMedPubMedCentralGoogle Scholar
  23. Horváth B, Domonkos Á, Kereszt A, Szűcs A, Ábrahám E, Ayaydin F, Bóka K, Chen Y, Chen R, Murray JD, Udvardi MK, Kondorosi É, Kaló P (2015) Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant. Proc Natl Acad Sci U S A 112:15232–15237CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ivanova KA, Tsyganova AV, Brewin NJ, Tikhonovich IA, Tsyganov VE (2015) Induction of host defences by Rhizobium during ineffective nodulation of pea (Pisum sativum L.) carrying symbiotically defective mutations sym40 (PsEFD), sym33 (PsIPD3/PsCYCLOPS) and sym42. Protoplasma 252:1505–1517CrossRefPubMedGoogle Scholar
  25. Kardailsky IV, Brewin NJ (1996) Expression of cysteine protease genes in pea nodule development and senescence. Mol Plant-Microbe Interact 9(8):689–695CrossRefPubMedGoogle Scholar
  26. Karmarkar V (2014) Transcriptional regulation of nodule development and senescence in Medicago truncatula. Doctoral thesis, Wageningen University, Wageningen, D.C. Available at: http://library.wur.nl/WebQuery/edepot/303161
  27. Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume–rhizobium mutualism. Nature 425:78–81CrossRefPubMedGoogle Scholar
  28. Kim M, Chen Y, Xi J, Waters C, Chen R, Wang D (2015) An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis. Proc Natl Acad Sci U S A 112:15238–15243CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kneen BE, LaRue TA, Hirsch AM, Smith CA, Weeden NF (1990) sym 13—a gene conditioning ineffective nodulation in Pisum sativum. Plant Physiol 94:899–905CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kosterin OE, Rozov SM (1993) Mapping of the new mutation blb and the problem of integrity of linkage group I. Pisum Genet 25:27–31Google Scholar
  31. Krusell L, Krause K, Ott T, Desbrosses G, Krämer U, Sato S (2005) The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules. Plant Cell 17:1625–1636CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kulaeva OA, Zhernakov AI, Afonin AM, Boikov SS, Sulima AS, Tikhonovich IA, Zhukov VA (2017) Pea Marker Database (PMD)—a new online database combining known pea (Pisum sativum L.) gene-based markers. PLoS One 12:e0186713CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kumagai H, Hakoyama T, Umehara Y, Sato S, Kaneko T, Tabata S, Kouchi H (2007) A novel ankyrin-repeat membrane protein, IGN1, is required for persistence of nitrogen-fixing symbiosis in root nodules of Lotus japonicus. Plant Physiol 143:1293–1305CrossRefPubMedPubMedCentralGoogle Scholar
  34. Martin DN, Proebsting WM, Hedden P (1999) The SLENDER gene of pea encodes a gibberellins 2-oxidase. Plant Physiol 121:775–781CrossRefPubMedPubMedCentralGoogle Scholar
  35. Matamoros MA, Baird LM, Escuredo PR, Dalton DA, Minchin FR, Iturbe-Ormaetxe I, Rubio MC, Moran JF, Gordon AJ, Becana M (1999) Stress-induced legume root nodule senescence. Physiological, biochemical, and structural alterations. Plant Physiol 121:97–111CrossRefPubMedPubMedCentralGoogle Scholar
  36. Maunoury N, Redondo-Nieto M, Bourcy M, Van de Velde W, Alunni B, Laporte P, Durand P, Agier N, Marisa L, Vaubert D, Delacroix H, Duc G, Ratet P, Aggerbeck L, Kondorosi E, Mergaert P (2010) Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches. PLoS One 5:e9519CrossRefPubMedPubMedCentralGoogle Scholar
  37. Morzhina EV, Tsyganov VE, Borisov AY, Lebsky VK, Tikhonovich IA (2000) Four developmental stages identified by genetic dissection of pea (Pisum sativum L.) root nodule morphogenesis. Plant Sci 155:75–83CrossRefPubMedGoogle Scholar
  38. Nemankin NF (2011) Analysis of pea (Pisum sativum L.) genetic system, controlling development of arbuscular mycorrhiza and nitrogen-fixing symbiosis. Dissertation Saint-Petersburg State University (in Russian) Google Scholar
  39. Novák K, Pešina K, Nebesářová J, Škrdleta V, Lisa L, Našinec V (1995) Symbiotic tissue degradation pattern in the ineffective nodules of three nodulation mutants of pea (Pisum sativum L.) Ann Bot 76:303–313CrossRefGoogle Scholar
  40. Oono R, Anderson CG, Denison RF (2011) Failure to fix nitrogen by non-reproductive symbiotic rhizobia triggers host sanctions that reduce fitness of their reproductive clonemates. Proc Roy Soc B-Biol Sci 278:2698–2703CrossRefGoogle Scholar
  41. Pariasca JA, Sunaga A, Miyazaki T, Hisaka H, Sonoda M, Nakagawa H, Sato T (2001) Cloning of cDNAs encoding senescence-associated genes, ACC synthase and ACC oxidase from stored snow pea pods (Pisum sativum L. var saccharatum) and their expression during pod storage. Postharvest Biol Technol 22:239–247CrossRefGoogle Scholar
  42. Peck SC, Kende H (1998) Differential regulation of genes encoding 1-aminocyclopropane-1-carboxylate (ACC) synthase in etiolated pea seedlings: effects of indole-3-acetic acid, wounding, and ethylene. Plant Mol Biol 38:977–982CrossRefPubMedGoogle Scholar
  43. Pérez Guerra JC, Coussens G, De Keysler A, De Rycke R, De Bodt S, Van De Velde W, Goormachtig S, Holsters M (2010) Comparison of developmental and stress-induced nodule senescence in Medicago truncatula. Plant Physiol 152:1574–1584CrossRefPubMedPubMedCentralGoogle Scholar
  44. Pierre O, Hopkins J, Combier M, Baldacci F, Engler G, Brouquisse R, Hérouart D, Boncompagni E (2014) Involvement of papain and legumain proteinase in the senescence process of Medicago truncatula nodules. New Phytol 202:849–863CrossRefPubMedGoogle Scholar
  45. Pladys D, Vance CP (1993) Proteolysis during development and senescence of effective and plant gene-controlled ineffective alfalfa nodules. Plant Physiol 103:379–384CrossRefPubMedPubMedCentralGoogle Scholar
  46. Puppo A, Groten K, Bastian F, Carzaniga R, Soussi M, Lucas MM (2005) Legume nodule senescence: roles for redox and hormone signaling in the orchestration of the natural aging process. New Phytol 165:683–701CrossRefPubMedGoogle Scholar
  47. Regus JU, Quides KW, O’Neill MR, Suzuki R, Savory EA, Chang JH, Sachs JL (2017) Cell autonomous sanctions in legumes target ineffective rhizobia in nodules with mixed infections. Am J Bot 104:1299–1312CrossRefGoogle Scholar
  48. Serova TA, Tsyganov VE (2014) Symbiotic nodule senescence in legumes: molecular-genetic and cellular aspects. Agr Biol 5:3–15Google Scholar
  49. Serova TA, Tikhonovich IA, Tsyganov VE (2017) Analysis of nodule senescence in pea (Pisum sativum L.) using laser microdissection, real-time PCR, and ACC immunolocalization. J Plant Physiol 212:29–44CrossRefPubMedGoogle Scholar
  50. Sinharoy S, Torres-Jerez I, Bandyopadhyay K, Kereszt A, Pislariu CI, Nakashima J, Benedito VA, Kondorosi E, Udvardi MK (2013) The C2H2 transcription factor regulator of symbiosome differentiation represses transcription of the secretory pathway gene VAMP721a and promotes symbiosome development in Medicago truncatula. Plant Cell 25:3584–3601CrossRefPubMedPubMedCentralGoogle Scholar
  51. Swaraj K, Laura JS, Bishnoi NR (1993) Nitrate induced nodule senescence and changes in activities of enzymes scavenging H2O2 in clusterbean (Cyamopsis tetragonaloba Taub.). J Plant Physiol 141:202–205CrossRefGoogle Scholar
  52. Tsyganov VE, Borisov AY, Rozov SM, Tikhonovich IA (1994) New symbiotic mutants of pea obtained after mutagenesis of laboratory line SGE. Pisum Genet 26:36–37Google Scholar
  53. Tsyganov VE, Morzhina EV, Stefanov SY, Borisov AY, Lebsky VK, Tikhonovich IA (1998) The pea (Pisum sativum L.) genes sym33 and sym40 control infection thread formation and root nodule function. Mol Gen Genet 256:491–503CrossRefGoogle Scholar
  54. Tsyganov VE, Voroshilova VA, Rozov SM, Borisov AY, Tikhonovich IA (2013) A new series of pea symbiotic mutants induced in the line SGE. Russ J Genet: Appl Res 3:156–162CrossRefGoogle Scholar
  55. Tsyganova AV, Tsyganov VE, Findlay KC, Borisov AY, Tikhonovich IA, Brewin NJ (2009) Distribution of legume arabinogalactan protein-extensin (AGPE) glycoproteins in symbiotically defective pea mutants with abnormal infection threads. Cell Tissue Biol 3:93–102CrossRefGoogle Scholar
  56. Tsyganova AV, Kitaeva AB, Tsyganov VE (2018) Cell differentiation in nitrogen-fixing nodules hosting symbiosomes. Funct Plant Biol 45:47–57CrossRefGoogle Scholar
  57. Van de Velde W, Pérez Guerra JC, De Keysler A, De Rycke R, Rombauts S, Maunoury N, Mergaert P (2006) Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiol 141:711–720CrossRefPubMedPubMedCentralGoogle Scholar
  58. Vauclare P, Bligny R, Gout E, De Meuron V, Widmer F (2010) Metabolic and structural rearrangement during dark-induced autophagy in soybean (Glycine max L.) nodules: an electron microscopy and 31P and 13C nuclear magnetic resonance study. Planta 231:1495–1504CrossRefPubMedGoogle Scholar
  59. Vernié T, Moreau S, de Billy F, Plet J, Combier JP, Rogers C, Oldroyd G, Frugier F, Niebel A, Gamas P (2008) EFD is an ERF transcription factor involved in the control of nodule number and differentiation in Medicago truncatula. Plant Cell 20:2696–2713CrossRefPubMedPubMedCentralGoogle Scholar
  60. Voroshilova VA, Demchenko KN, Brewin NJ, Borisov AY, Tikhonovich IA (2009) Initiation of a legume nodule with an indeterminate meristem involves proliferating host cells that harbour infection threads. New Phytol 181:913–923CrossRefPubMedGoogle Scholar
  61. Wang C, Yu H, Luo L, Duan L, Cai L, He X, Wen J, Mysore KS, Li G, Xiao A, Duanmu D, Cao Y, Hong Z, Zhang Z (2016) NODULES WITH ACTIVATED DEFENSE 1 is required for maintenance of rhizobial endosymbiosis in Medicago truncatula. New Phytol 212:176–191CrossRefPubMedGoogle Scholar
  62. Wang Q, Liu J, Li H, Yang S, Körmöczi P, Kereszt A, Zhu H (2017) Nodule-specific cysteine-rich peptides negatively regulate nitrogen-fixing symbiosis in a strain-specific manner in Medicago truncatula. Mol Plant-Microbe Interact 31:240–248CrossRefPubMedGoogle Scholar
  63. Westhoek A, Field E, Rehling F, Mulley G, Webb I, Poole PS, Turnbull LA (2017) Policing the legume-Rhizobium symbiosis: a critical test of partner choice. Sci Rep 7:1419CrossRefPubMedPubMedCentralGoogle Scholar
  64. Yamaya-Ito H, Shimoda Y, Hakoyama T, Sato S, Kaneko T, Hossain MS, Shibata S, Kawaguchi M, Hayashi M, Kouchi H, Umehara Y (2018) Loss-of-function of ASPARTIC PEPTIDASE NODULE-INDUCED 1 (APN1) in Lotus japonicus restricts efficient nitrogen-fixing symbiosis with specific Mesorhizobium loti strains. Plant J 93:5–16CrossRefPubMedGoogle Scholar
  65. Yang S, Wang Q, Fedorova E, Liu J, Qin Q, Zheng Q, Price PA, Pan H, Wang D, Griffitts JS, Bisseling T, Zhu H (2017) Microsymbiont discrimination mediated by a host-secreted peptide in Medicago truncatula. Proc Natl Acad Sci U S A 114:6848–6853PubMedPubMedCentralGoogle Scholar
  66. Zdunek-Zastocka E (2008) Molecular cloning, characterization and expression analysis of three aldehyde oxidase genes from Pisum sativum L. Plant Physiol Biochem 46:19–28CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Tatiana A. Serova
    • 1
  • Anna V. Tsyganova
    • 1
  • Viktor E. Tsyganov
    • 1
  1. 1.All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular BiologySaint-PetersburgRussia

Personalised recommendations