Protoplasma

, Volume 255, Issue 3, pp 963–976 | Cite as

Physiological responses to salt stress of salt-adapted and directly salt (NaCl and NaCl+Na2SO4 mixture)-stressed cyanobacterium Anabaena fertilissima

Original Article
  • 118 Downloads

Abstract

Soil salinity in nature is generally mixed type; however, most of the studies on salt toxicity are performed with NaCl and little is known about sulfur type of salinity (Na2SO4). Present study discerns the physiologic mechanisms responsible for salt tolerance in salt-adapted Anabaena fertilissima, and responses of directly stressed parent cells to NaCl and NaCl+Na2SO4 mixture. NaCl at 500 mM was lethal to the cyanobacterium, whereas salt-adapted cells grew luxuriantly. Salinity impaired gross photosynthesis, electron transport activities, and respiration in parent cells, but not in the salt-adapted cells, except a marginal increase in PSI activity. Despite higher Na+ concentration in the salt mixture, equimolar NaCl appeared more inhibitive to growth. Sucrose and trehalose content and antioxidant activities were maximal in 250 mM NaCl-treated cells, followed by salt mixture and was almost identical in salt-adapted (exposed to 500 mm NaCl) and control cells, except a marginal increase in ascorbate peroxidase activity and an additional fourth superoxide dismutase isoform. Catalase isoform of 63 kDa was induced only in salt-stressed cells. Salinity increased the uptake of intracellular Na+ and Ca2+ and leakage of K+ in parent cells, while cation level in salt-adapted cells was comparable to control. Though there was differential increase in intracellular Ca2+ under different salt treatments, ratio of Ca2+/Na+ remained the same. It is inferred that stepwise increment in the salt concentration enabled the cyanobacterium to undergo priming effect and acquire robust and efficient defense system involving the least energy.

Keywords

Cyanobacterium Salinity Adaptation Antioxidant activity Photosynthesis Respiration 

Notes

Acknowledgements

We gratefully acknowledge the National Academy of Sciences, India, for awarding NASI-Senior Scientist to AKR and SRF to PS

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126.  https://doi.org/10.1016/S0076-6879(84)05016-3 CrossRefPubMedGoogle Scholar
  2. Allen MB, Arnon DI (1955) Studies on nitrogen-fixing blue-green algae. I. Growth and nitrogen fixation by Anabaena cylindrical Lemm. Plant Physiol 30(4):366–372.  https://doi.org/10.1104/pp.30.4.366 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amor NB, Jiménez A, Megdiche W, Lundqvist M, Sevilla F, Abdelly C (2006) Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima. Physiol Plant 126(3):446–457.  https://doi.org/10.1111/j.1399-3054.2006.00620.x CrossRefGoogle Scholar
  4. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55(1):373–399.  https://doi.org/10.1146/annurev.arplant.55.031903.141701 CrossRefGoogle Scholar
  5. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1–15.  https://doi.org/10.1104/pp.24.1.1 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Biol 50(1):601–639.  https://doi.org/10.1146/annurev.arplant.50.1.601 CrossRefGoogle Scholar
  7. Association of Official Analytical Chemists (1984) Official methods of analysis, 14th edn. Washington DCGoogle Scholar
  8. Bannister JV, Bannister WH, Rotilio G (1987) Aspects of the structure, function, and applications of superoxide dismutase. Crit Rev Biochem 22(2):111–180.  https://doi.org/10.3109/10409238709083738 CrossRefGoogle Scholar
  9. Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257CrossRefPubMedGoogle Scholar
  11. Cadenas E (1989) Biochemistry of oxygen toxicity. Annu Rev Biochem 58(1):79–110.  https://doi.org/10.1146/annurev.bi.58.070189.000455 CrossRefPubMedGoogle Scholar
  12. Cameron JC, Pakrasi HB (2010) Essential role of glutathione in acclimation to environmental and redox perturbations in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 154(4):1672–1685.  https://doi.org/10.1104/pp.110.162990 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Canini A, Galiazzo F, Rotilio G, Grilli Caiola M (1991) Superoxide dismutase in the symbiont Anabaena azollae Strasb. Plant Physiol 97(1):34–40.  https://doi.org/10.1104/pp.97.1.34 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Canini A, Leonardi D, Caiola MG (2001) Superoxide dismutase activity in the cyanobacterium Microcystis aeruginosa after surface bloom formation. New Phytol 152:107–116CrossRefGoogle Scholar
  15. Casamayor EO, Massana R, Benlloch S, Øvreås L, Díez B, Goddard VJ, Gasol JM, Joint I, Rodríguez-Valera F, Pedrós-Alió C (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4(6):338–348.  https://doi.org/10.1046/j.1462-2920.2002.00297.x CrossRefPubMedGoogle Scholar
  16. Castillo FJ, Penel C, Greppin H (1984) Peroxidase release induced by ozone in Sedum album leaves involvement of Ca2+. Plant Physiol 74:846–851CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chakravarty D, Banerjee M, Waghmare N, Ballal A (2016) Cyanobacterial Mn-catalase ‘KatB’: molecular link between salinity and oxidative stress resistance. Commun Integr Biol 9:e1216738CrossRefPubMedPubMedCentralGoogle Scholar
  18. Colla G, Rouphael Y, Rea E, Cardarelli M (2012) Grafting cucumber plants enhance tolerance to sodium chloride and sulfate salinization. Sci Horti 135:177–185.  https://doi.org/10.1016/j.scienta.2011.11.023 CrossRefGoogle Scholar
  19. Craft C (2007) Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and US tidal marshes. Limnol Oceanogr 52(3):1220–1230.  https://doi.org/10.4319/lo.2007.52.3.1220 CrossRefGoogle Scholar
  20. Davis BJ (1964) Disc electrophoresis–II method and application to human serum proteins. Ann N Y Acad Sci 121:404–427CrossRefPubMedGoogle Scholar
  21. Dubey AK, Rai AK (1995) Application of algal biofertilizers (Aulosira fertilissima tenuis and Anabaena doliolum Bhardawaja) for sustained paddy cultivation in Northern India. Isr J Plant Sci 43(1):41–51.  https://doi.org/10.1080/07929978.1995.10676589 CrossRefGoogle Scholar
  22. Endo T, Asada K (2006) Photosystem I and photoprotection: cyclic electron flow and water-water cycle. In: Adams B, Adams WW III, Mattoo AK (eds) Photoprotection, photoinhibition, gene regulation and environment. Springer, Dordrecht, pp 205–221.  https://doi.org/10.1007/1-4020-3579-9_14 CrossRefGoogle Scholar
  23. Fatma M, Asgher M, Masood A, Khan NA (2014) Excess sulfur supplementation improves photosynthesis and growth in mustard under salt stress through increased production of glutathione. Environ Exp Bot 107:55–63.  https://doi.org/10.1016/j.envexpbot.2014.05.008 CrossRefGoogle Scholar
  24. Flameling IA, Kromkamp J (1994) Responses of respiration and photosynthesis of Scenedesmus protuberans Fritsch to gradual and steep salinity increases. J Plankton Res 16(12):1781–1791.  https://doi.org/10.1093/plankt/16.12.1781 CrossRefGoogle Scholar
  25. Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155(1):2–18.  https://doi.org/10.1104/pp.110.167569 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Foyer C, Noctor G, Buchanan B, Dietz K, Pfannschmidt T (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905CrossRefPubMedGoogle Scholar
  27. Gabbay-Azaria R, Sehonfeld M, Tel-Or S, Messinger R, Tel-Or E (1992) Respiratory activity in the marine cyanobacterium Spirulina subsalsa and its role in salt tolerance. Arch Microbiol 157:183–190Google Scholar
  28. Giannopolitis CN, Ries SK (1977) Superoxide dismutases I. Occurrence in higher plants. Plant Physiol 59(2):309–314.  https://doi.org/10.1104/pp.59.2.309 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Grant NG (1978) Respiratory processes in mitochondria. In: Hellebust JA, Craigie JS (eds) Handbook of Phycological method: physiological and biochemical methods. Cambridge University Press, UK, pp 329–335Google Scholar
  30. Grattan SR, Grieve CM (1999) Mineral nutrient acquisition and response by plants grown in saline environments. In: Pessarakli M (ed) Handbook of plant and crop stress, 3rd edn. Marcel Dekker, New York, pp 203–229Google Scholar
  31. Hadacek F, Bachmann G (2015) Low-molecular-weight metabolite systems chemistry. Front Environ Sci 3:12.  https://doi.org/10.3389/fenvs.2015.00012 CrossRefGoogle Scholar
  32. Hagemann MA, Erdmann NO (1997) Environmental stresses. In: Rai AK (ed) Cyanobacterial nitrogen metabolism and environmental biotechnology. Springer, Heidelberg, pp 156–221Google Scholar
  33. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51(1):463–499.  https://doi.org/10.1146/annurev.arplant.51.1.463 CrossRefGoogle Scholar
  34. Hu Y, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168(4):541–549.  https://doi.org/10.1002/jpln.200420516 CrossRefGoogle Scholar
  35. Ismaiel MM, El-Ayouty YM, Loewen PC, Piercey-Normore MD (2014) Characterization of the iron-containing superoxide dismutase and its response to stress in cyanobacterium Spirulina (Arthrospira) platensis. J Appl Phycol 26(4):1649–1658.  https://doi.org/10.1007/s10811-013-0233-y CrossRefGoogle Scholar
  36. Jaiswal N, Singh M, Dubey RS, Venkataramanappa V, Datta D (2013) Phytochemicals and antioxidative enzymes defence mechanism on occurrence of yellow vein mosaic disease of pumpkin (Cucurbita moschata). 3. Biotech 3:287–295Google Scholar
  37. Jeanjean R, Matthijs HCP, Onana B, Havaux M, Joset F (1993) Exposure of the cyanobacterium Synechocystis PCC6803 to salt stress induces concerted changes in respiration and photosynthesis. Plant Cell Physiol 34:1073–1079Google Scholar
  38. Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EM, Chisholm SW (2006) Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311(5768):1737–1740.  https://doi.org/10.1126/science.1118052 CrossRefPubMedGoogle Scholar
  39. Kader MA, Lindberg S (2008) Cellular traits for sodium tolerance in rice (Oryza sativa L.) Plant Biotechnol 25(3):247–255.  https://doi.org/10.5511/plantbiotechnology.25.247 CrossRefGoogle Scholar
  40. Kader MA, Lindberg S (2010) Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signal Behav 5(3):233–238.  https://doi.org/10.4161/psb.5.3.10740 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kader MA, Lindberg S, Seidel T, Golldack D, Yemelyanov V (2007) Sodium sensing induces different changes in free cytosolic calcium concentration and pH in salt-tolerant and salt-sensitive rice (Oryza sativa L.) cultivars. Physiol Plant 130:99–111CrossRefGoogle Scholar
  42. Kaneko T, Nakamura Y, Wolk CP et al (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8:205–213CrossRefPubMedGoogle Scholar
  43. Kochian LV, Lucas WJ (1988) Potassium transport in roots. In: Callow JA (ed) Advances in botanical research, 15. Academic Press, New York, pp 93–178Google Scholar
  44. Lauchli A, Schubert S (1989) The role of calcium in the regulation of membrane and cellular growth processes under salt stress. In: Cherry JH (ed) Environmental stress in plants. Springer-Verlag, Berlin-Heidelberg, pp 131–137.  https://doi.org/10.1007/978-3-642-73163-1_13 CrossRefGoogle Scholar
  45. Lemian Liu JY, Yu Z, Wilkinson DM (2015) The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. ISME J 9:2068CrossRefPubMedPubMedCentralGoogle Scholar
  46. Loomis MJ, Craft CB (2010) Carbon sequestration and nutrient (nitrogen, phosphorus) accumulation in river-dominated tidal marshes, Georgia, USA. Soil Sci Soc Am J 74(3):1028–1036.  https://doi.org/10.2136/sssaj2009.0171 CrossRefGoogle Scholar
  47. Lowry OH, Rosengrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193(1):265–275PubMedGoogle Scholar
  48. Lu C, Vonshak A (1999) Characterization of PS II photochemistry in salt-adapted cells of cyanobacterium Spirulina platensis. New Phytol 141(2):231–239.  https://doi.org/10.1046/j.1469-8137.1999.00340.x CrossRefGoogle Scholar
  49. Lynch J, Läuchli A (1988) Salinity affects intracellular calcium in corn root protoplasts. Plant Physiol 87(2):351–356.  https://doi.org/10.1104/pp.87.2.351 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84(2):123–133.  https://doi.org/10.1006/anbo.1999.0912 CrossRefGoogle Scholar
  51. Maathuis FJ, Sanders D (1996) Mechanisms of potassium absorption by higher plant roots. Physiol Plant 96(1):158–168.  https://doi.org/10.1111/j.1399-3054.1996.tb00197.x CrossRefGoogle Scholar
  52. Mackay MA, Norton RS, Borowitzka LJ (1984) Organic osmoregulatory solutes in cyanobacteria. Microbiology 130(9):2177–2191.  https://doi.org/10.1099/00221287-130-9-2177 CrossRefGoogle Scholar
  53. Martinez V, Lauchli A (1993) Effects of Ca+2 on the salt-stress response of barley roots as observed in vivo 31p-nuclear magnetic resonance and in vitro analysis. Planta 190:519–524CrossRefGoogle Scholar
  54. Martinez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse CM, Pozo MJ, Ton J, Van Dam NM, Conrath U (2016) Recognizing plant defense priming. Trends Plant Sci 21(10):818–822.  https://doi.org/10.1016/j.tplants.2016.07.009 CrossRefPubMedGoogle Scholar
  55. Masato O (1980) An improved method for determination of L-ascorbic acid and L-dehydroascorbic acid in blood plasma. Clin Chim Acta 103(3):259–268.  https://doi.org/10.1016/0009-8981(80)90144-8 CrossRefGoogle Scholar
  56. Masip L, Veeravalli K, Georgiou G (2006) The many faces of glutathione in bacteria. Antioxid Redox Signal 8(5-6):753–762.  https://doi.org/10.1089/ars.2006.8.753 CrossRefPubMedGoogle Scholar
  57. Mauch-Mani B, Baccelli I, Luna E, Flors V (2017) Defense priming: an adaptive part of induced resistance. Annu Rev Plant Biol 68(1):485–512.  https://doi.org/10.1146/annurev-arplant-042916-041132 CrossRefPubMedGoogle Scholar
  58. McCord JM, Fridovich I (1969) Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22):6049–6055PubMedGoogle Scholar
  59. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498.  https://doi.org/10.1016/j.tplants.2004.08.009 CrossRefPubMedGoogle Scholar
  60. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59(1):651–681.  https://doi.org/10.1146/annurev.arplant.59.032607.092911 CrossRefPubMedGoogle Scholar
  61. Mutsuda M, Ishikawa T, Takeda T, Shigeoka S (1996) The catalase-peroxidase of Synechococcus PCC 7942: purification, nucleotide sequence analysis and expression in Escherichia coli. Biochem J 316(1):251–257.  https://doi.org/10.1042/bj3160251 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880Google Scholar
  63. Neto MCL, Lobo AK, Martins MO, Fontenele AV, Silveira JAG (2014) Dissipation of excess photosynthetic energy contributes to salinity tolerance: a comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas. J Plant Physiol 171(1):23–30.  https://doi.org/10.1016/j.jplph.2013.09.002 CrossRefGoogle Scholar
  64. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75(1):14–49.  https://doi.org/10.1128/MMBR.00028-10 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Ning J, Ai S, Yang S, Cui L, Chen Y, Sun L, Wang R, Li M, Zengt Z (2015) Physiological and antioxidant responses of Basella alba to NaCl or Na2SO4. Acta Physiol Plant 37(7):126.  https://doi.org/10.1007/s11738-015-1860-5 CrossRefGoogle Scholar
  66. Nriagu JO (1978) Production and uses of sulfur. In: Nriagu JO (ed) Sulfur in the environment, part 1: the atmospheric cycle. Wiley, New York, pp 1–21Google Scholar
  67. Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4(1):2.  https://doi.org/10.1186/1746-1448-4-2 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Pervez H, Ashraf M, Makhdum MI (2001) Influence of potassium nutrition on gas exchange characteristics and water relations in cotton (Gossypium hirsutum L.) Photosynthetica 42:251–255CrossRefGoogle Scholar
  69. Pitman MG, Lauchli A (2002) Global impact of salinity and agricultural ecosystems. In: Lauchli A, Luttge U (eds) Salinity: environment-plants-molecules. Kluwer Academic Publishers, Netherlands, pp 3–20Google Scholar
  70. Rai AK (1990) Biochemical characteristics of photosynthetic response to various external salinities in halotolerant and fresh water cyanobacteria. FEMS Microbiol Lett 69:177–180CrossRefGoogle Scholar
  71. Rai AK, Abraham G (1993) Salinity tolerance and growth analysis of the cyanobacterium Anabaena doliolum. Bull Environ Contam Toxicol 51(5):724–731CrossRefPubMedGoogle Scholar
  72. Rai AK, Rai V (2000) Response of NaCl-adapted and unadapted Azolla pinnata–Anabaena azollae complex to salt-stress: partial photosynthetic processes and respiration. Symbiosis 29:249–261Google Scholar
  73. Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136CrossRefPubMedPubMedCentralGoogle Scholar
  74. Reed RH, Borowitzka LJ, Mackay MA, Chudek JA, Foster R, Warr SRC, Moore DJ, Stewart WDP (1986) Organic solute accumulation in osmotically stressed cyanobacteria. FEMS Microbiol Rev 2:51–56CrossRefGoogle Scholar
  75. Rejili M, Vadel AM, Guetet A, Neffatti M (2007) Effect of NaCl on the growth and the ionic balance K+/Na+ of two populations of Lotus creticus (L.) (Papilionaceae). S Afr J Bot 73(4):623–631.  https://doi.org/10.1016/j.sajb.2007.06.006 CrossRefGoogle Scholar
  76. Rietz DN, Haynes RJ (2003) Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol Biochem 35(6):845–854.  https://doi.org/10.1016/S0038-0717(03)00125-1 CrossRefGoogle Scholar
  77. Rogers ME, Grieve CM, Shannon MC (1998) The response of lucerne (Medicago sativa L.) to sodium sulphate and chloride salinity. Plant Soil 202(2):271–280.  https://doi.org/10.1023/A:1004317513474 CrossRefGoogle Scholar
  78. Römheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant Soil 335(1-2):155–180.  https://doi.org/10.1007/s11104-010-0520-1 CrossRefGoogle Scholar
  79. Rozen A, Mittler R, Burstein Y, Tel-Or E (1992) A unique ascorbate peroxidase active component in the cyanobacterium Synechococcus PCC 7942 (R2). Free Radic Res Commun 17(1):1–8.  https://doi.org/10.3109/10715769209061084 CrossRefPubMedGoogle Scholar
  80. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  81. Scandalios JG (2002) The rise of ROS. Trends Biochem Sci 27(9):483–486.  https://doi.org/10.1016/S0968-0004(02)02170-9 CrossRefPubMedGoogle Scholar
  82. Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky F (2009) Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev 73(2):249–299.  https://doi.org/10.1128/MMBR.00035-08 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30(11):1191–1212.  https://doi.org/10.1016/S0891-5849(01)00480-4 CrossRefPubMedGoogle Scholar
  84. Singh M, Sharma NK, Prasad SB, Yadav SS, Narayan G, Rai AK (2013) Freshwater cyanobacterium Anabaena doliolum transformed with ApGSMT-DMT exhibited enhanced salt tolerance and protection to nitrogenase activity, but became halophilic. Microbiology 159:640–647CrossRefGoogle Scholar
  85. Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5, 5′-dithiobis (2-nitrobenzoic acid). Anal Biochem 175(2):408–413.  https://doi.org/10.1016/0003-2697(88)90564-7 CrossRefPubMedGoogle Scholar
  86. Swapnil P, Singh M, Singh S, Sharma NK, Rai AK (2015) Recombinant glycinebetaine improves metabolic activities, ionic balance and salt tolerance in diazotrophic freshwater cyanobacteria. Algal Res 11:194–203.  https://doi.org/10.1016/j.algal.2015.06.022 CrossRefGoogle Scholar
  87. Swapnil P, Yadav AK, Srivastav S, Sharma NK, Srikrishna S, Rai AK (2017) Biphasic ROS accumulation and programmed cell death in a cyanobacterium exposed to salinity (NaCl and Na2SO4). Algal Res 23:88–95.  https://doi.org/10.1016/j.algal.2017.01.014 CrossRefGoogle Scholar
  88. Tandeau de Marsac N, Houmard J (1993) Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol Lett 104(1-2):119–189.  https://doi.org/10.1111/j.1574-6968.1993.tb05866.x CrossRefGoogle Scholar
  89. Tel-Or E, Huflejt ME, Packer L (1985) The role of gluthatione and ascorbate in hydroperoxide removal in cyanobacteria. Biochem Biophys Res Commun 132(2):533–539.  https://doi.org/10.1016/0006-291X(85)91166-0 CrossRefPubMedGoogle Scholar
  90. Tel-Or E, Huflejt ME, Packer L (1986) Hydroperoxide metabolism in cyanobacteria. Arch Biochem Biophys 246(1):396–402.  https://doi.org/10.1016/0003-9861(86)90485-6 CrossRefPubMedGoogle Scholar
  91. Tichy M, Vermaas W (1999) In Vivo role of catalase-peroxidase in Synechocystis sp. strain PCC 6803. J Bacteriol 181(6):1875–1882PubMedPubMedCentralGoogle Scholar
  92. Tripathi K, Kageyama H, Takabe T, Rai AK (2013) Physiological, biochemical and molecular responses of the halophilic cyanobacterium Aphanothece halophytica to P-deficiency. Eur J Phycol 48(4):461–473.  https://doi.org/10.1080/09670262.2013.859303 CrossRefGoogle Scholar
  93. Van Handel E (1968) Direct microdetermination of sucrose. Anal Biochem 22(2):280–283.  https://doi.org/10.1016/0003-2697(68)90317-5 CrossRefPubMedGoogle Scholar
  94. Vonshak A, Guy R, Guy M (1988) The response of the filamentous cyanobacterium Spirulina platensis to salt stress. Arch Microbiol 150:417–420CrossRefGoogle Scholar
  95. Vonshak A, Chanawongse L, Bunnag B, Tanticharoen M (1995) Physiological characterization of Spirulina platensis isolates: response to light and salinity. Plant Physiol 14:161–166Google Scholar
  96. Yang C, Zhang ZS, Gao HY, Xl F, Liu MJ, Li XD (2014) The mechanism by which NaCl treatment alleviates PSI photoinhibition under chilling-light treatment. J Photochem Photobiol B 140:286–291.  https://doi.org/10.1016/j.jphotobiol.2014.08.012 CrossRefPubMedGoogle Scholar
  97. Zeng MT, Vonshak A (1998) Adaptation of Spirulina platensis to salinity stress. Comp Biochem Physiol B 120(1):113–118.  https://doi.org/10.1016/S1095-6433(98)10018-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BotanyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations