Advertisement

Acta Mechanica

, Volume 230, Issue 5, pp 1843–1853 | Cite as

Effects of thermal stress on the failure of soft matter with sharp–hard inclusion

  • Pengyu Pei
  • Yan Shi
  • Luqiao Qi
  • Cun-Fa GaoEmail author
Original Paper

Abstract

This paper studies the effects of thermal stress on failure modes of soft matter with a sharp–hard inclusion. Two failure modes, i.e., interface failure and penetration failure, are found, and the influences of mechanical loading on each mode are discussed, respectively. Based on theoretical analysis, we get significant insight into the failure behavior of this soft–hard system. Finite element analysis is employed with consideration of the large deformation of the soft matter, and the results demonstrate the effectiveness of theoretical predictions within a large range of loads. The penetration of the soft matter is determined by the thermal expansion coefficient and the change in temperature. In addition, their effects on the categories of the failure mode are shown in a phase diagram. Suitable remote uniform stress fields can counteract the effects of thermal stresses at the tips of the inclusion and, therefore, counteract penetration or interface separation as well. This paper provides a convenient approach to evaluating failure modes and avoiding failure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

C.F. Gao and Y. Shi acknowledge the support from the National Science Foundation of China (Grant Nos. 11872203 and 11702131).

References

  1. 1.
    Zhang, M.G., Cao, Y.P., Li, G.Y., Feng, X.Q.: Spherical indentation method for determining the constitutive parameters of hyperelastic soft materials. Biomech. Model. Mechanobiol. 13(1), 1–11 (2014)CrossRefGoogle Scholar
  2. 2.
    Vacanti, J.P., Langer, R., Upton, J., Marler, J.J.: Transplantation of cells in matrices for tissue regeneration. Adv. Drug Deliv. Rev. 33(1–2), 165–182 (1998)Google Scholar
  3. 3.
    Lee, K.Y., Mooney, D.J.: Hydrogels for tissue engineering. Chem. Rev. 101(7), 1869–1879 (2001)CrossRefGoogle Scholar
  4. 4.
    Trivedi, D., Rahn, C.D., Kier, W.M., Walker, I.D.: Soft robotics: biological inspiration, state of the art, and future research. Appl. Bion. Biomech. 5(3), 99–117 (2008)CrossRefGoogle Scholar
  5. 5.
    Shepherd, R.F., Ilievski, F., Choi, W., Morin, S.A., Stokes, A.A., Mazzeo, A.D., Chen, X., Wang, M., Whitesides, G.M.: Multigait soft robot. Proc. Natl. Acad. Sci. USA 108(51), 20400–20403 (2011)CrossRefGoogle Scholar
  6. 6.
    Raemdonck, K., Demeester, J., Smedt, S.D.: Advanced nanogel engineering for drug delivery. Soft Matter 5(4), 707 (2009)CrossRefGoogle Scholar
  7. 7.
    Lipomi, D.J., Tee, B.C., Vosgueritchian, M., Bao, Z.: Stretchable organic solar cells. Adv. Mater. 23(15), 1771–1775 (2011)CrossRefGoogle Scholar
  8. 8.
    Lü, C.: Mechanics of tunable hemispherical electronic eye camera systems that combine rigid device elements with soft elastomers. J. Appl. Mech. 80(6), 061022 (2013)CrossRefGoogle Scholar
  9. 9.
    Wang, S., Li, M., Wu, J., Kim, D.H., Lu, N., Su, Y., Kang, Z., Huang, Y., Rogers, J.A.: Mechanics of epidermal electronics. J. Appl. Mech. 79(3), 031022 (2012)CrossRefGoogle Scholar
  10. 10.
    Pelrine, R., Kornbluh, R., Pei, Q., Joseph, J.: High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454), 836–839 (2000)CrossRefGoogle Scholar
  11. 11.
    Anderson, I.A., Gisby, T.A., Mckay, T.G., Obrien, B.M., Calius, E.P.: Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J. Appl. Phys. 112(4), 041101–041120 (2012)CrossRefGoogle Scholar
  12. 12.
    Keplinger, C., Suo, Z.: Stretchable, transparent, ionic conductors. Science 341(6149), 984–987 (2013)CrossRefGoogle Scholar
  13. 13.
    Lee, S., Reuveny, A., Reeder, J., Lee, S., Jin, H., Liu, Q., Yokota, T., Sekitani, T., Isoyama, T., Abe, Y.: A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 11(5), 472 (2016)CrossRefGoogle Scholar
  14. 14.
    Sun, J.Y., Keplinger, C., Whitesides, G.M., Suo, Z.: Ionic skin. Adv. Mater. 26(45), 7608–7614 (2015)CrossRefGoogle Scholar
  15. 15.
    Yang, C.H., Chen, B., Lu, J.J., Yang, J.H., Zhou, J., Chen, Y.M., Suo, Z.: Ionic cable. Extreme Mech. Lett. 3, 59–65 (2015)CrossRefGoogle Scholar
  16. 16.
    Gao, C.F.: Non-axisymmetric thermal stress around a circular hole in a functionally graded infinite plate. J. Therm. Stresses 33(4), 318–334 (2010)CrossRefGoogle Scholar
  17. 17.
    Luo, J.C., Gao, C.F.: Stress field of a coated arbitrary shape inclusion. Meccanica 46(5), 1055–1071 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Chao, C.K., Chang, K.W.: Contact stresses in an infinite plate containing a rigid circular inclusion under thermal loads. Acta Mech. 152(1–4), 95–108 (2001)CrossRefzbMATHGoogle Scholar
  19. 19.
    Kaczyński, A., Monastyrskyy, B.: Thermal stresses in a periodic two-layer space with an interface rigid inclusion under uniform heat flow. Acta Mech. 203(3–4), 183–195 (2009)CrossRefzbMATHGoogle Scholar
  20. 20.
    Dai, M., Sun, H.: Thermo-elastic analysis of a finite plate containing multiple elliptical inclusions. Int. J. Mech. Sci. 75(6), 337–344 (2013)CrossRefGoogle Scholar
  21. 21.
    Dai, M., Gao, C.F., Schiavone, P.: Closed-form solution for a circular nano-inhomogeneity with interface effects in an elastic plane under uniform remote heat flux. IMA J. Appl. Math. 82(2), 384–395 (2016)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Pei, P.Y., Chang, W.X., Hai, Q., Gao, C.F.: A new theoretical model of the quasistatic single-fiber pullout problem: the energy-based criterion with unloading process. Compos. Sci. Technol. 137, 69–77 (2016)CrossRefGoogle Scholar
  23. 23.
    Dai M (2018) Design of periodic harmonic holes with surface tension in plane deformations. Math. Mech. Solids.  https://doi.org/10.1177/1081286518811880
  24. 24.
    Dai, M., Gharahi, A., Schiavone, P.: Analytic solution for a circular nano-inhomogeneity with interface stretching and bending resistance in plane strain deformations. Appl. Math. Modell. 55, 160–170 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Yang, H., Dai, M.: Influence of surface roughness on the stress field around a nanosized hole with surface elasticity. Zeitschrift für angewandte Mathematik und Physik 69(5), 127 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sun, J.Y., Zhao, X., Illeperuma, W.R.K., Chaudhuri, O., Oh, K.H., Mooney, D.J., Vlassak, J.J., Suo, Z.: Highly stretchable and tough hydrogels. Nature 489(7414), 133–136 (2012)CrossRefGoogle Scholar
  27. 27.
    Fakhouri, S., Hutchens, S.B., Crosby, A.J.: Puncture mechanics of soft solids. Soft Matter 11(23), 4723–4730 (2015)CrossRefGoogle Scholar
  28. 28.
    Liu, J., Chen, Z., Liang, X., Huang, X., Mao, G., Hong, W., Yu, H., Qu, S.: Puncture mechanics of soft elastomeric membrane with large deformation by rigid cylindrical indenter. J. Mech. Phys. Solids 112, 458–471 (2018)CrossRefGoogle Scholar
  29. 29.
    Zhang, E., Bai, R., Morelle, X.P., Suo, Z.: Fatigue fracture of nearly elastic hydrogels. Soft Matter 14(18), 3563 (2018)CrossRefGoogle Scholar
  30. 30.
    Li, B., Cao, Y.P., Feng, X.Q., Gao, H.: Mechanics of morphological instabilities and surface wrinkling in soft materials: a review. Soft Matter 8(21), 5728–5745 (2012)CrossRefGoogle Scholar
  31. 31.
    Jagota, A., Bennison, S.J., Londono, J.D.: Crack blunting and the strength of soft elastic solids. Proc. Math. Phys. Eng. Sci. 459(2034), 1489–1516 (2003)CrossRefzbMATHGoogle Scholar
  32. 32.
    Pei, P., Shi, Y., Yang, G., Gao, C.F.: Fracture analyses of soft materials with hard inclusion. J. Appl. Mech. 85(11), 111003 (2018)CrossRefGoogle Scholar
  33. 33.
    Yin, S.F., Li, B., Cao, Y.P., Feng, X.Q.: Surface wrinkling of anisotropic films bonded on a compliant substrate. Int. J. Solids Struct. 141, 219–231 (2018)CrossRefGoogle Scholar
  34. 34.
    Zhang, C., Hao, Y.K., Li, B., Feng, X.Q., Gao, H.: Wrinkling patterns in soft shells. Soft Matter 14(9), 1681–1688 (2018)CrossRefGoogle Scholar
  35. 35.
    Huang, S.Q., Li, B., Feng, X.Q.: Three-dimensional analysis of spontaneous surface instability and pattern formation of thin soft films. J. Appl. Phys. 103(8), 545 (2008)Google Scholar
  36. 36.
    Du, J., Chen, X., Liang, X., Zhang, G., Xu, J., He, L., Zhan, Q., Feng, X.Q., Chien, S., Yang, C.: Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity. Sci. Found. China 108(1), 9466–9471 (2011)Google Scholar
  37. 37.
    Pourmodheji, R., Qu, S., Yu, H.: Two possible defect growth modes in soft solids. J. Appl. Mech. 85(3), 031001 (2018)CrossRefGoogle Scholar
  38. 38.
    Dai, M., Li, M., Schiavone, P.: Plane deformations of an inhomogeneity-matrix system incorporating a compressible liquid inhomogeneity and complete Gurtin–Murdoch interface model. J. Appl. Mech. 85(12), 121010 (2018)CrossRefGoogle Scholar
  39. 39.
    Ding, J., Remmers, J.J.C., Leszczynski, S., Huyghe, J.M.: Swelling driven crack propagation in large deformation in ionized hydrogel. J. Appl. Mech. 85(2) (2017)Google Scholar
  40. 40.
    Chen, C., Wang, Z., Suo, Z.: Flaw sensitivity of highly stretchable materials. Extreme Mech. Lett. 10, 50–57 (2017)CrossRefGoogle Scholar
  41. 41.
    Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen (1975)zbMATHGoogle Scholar
  42. 42.
    Dai, M., Schiavone, P.: Analytic solution for a line edge dislocation in a bimaterial system incorporating interface elasticity. J. Elast. 132, 295–306 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Jiang, C.P.: The plane problem of collinear rigid lines under arbitrary loads. Eng. Fract. Mech. 39(2), 299–308 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations