Advertisement

Inhomogeneous deformation growth of a metal under cyclic loading and its influence on fatigue

  • Da-Wei Qin
  • J. Woody JuEmail author
  • Ke-Shi Zhang
  • Ze-Shen Li
Original Paper
  • 13 Downloads

Abstract

In this paper, the effects of inhomogeneous material deformation and fatigue caused by meso-mechanical inhomogeneity are investigated. A representative volume element is constructed for pure copper as a material model which features a polycrystalline Voronoi aggregation consisting of a number of crystal grains. The Chaboche model with random parameters is adopted to reflect inhomogeneous cyclic plastic behavior of grains. Key simulations are performed to model the experimental cyclic evolution of strain fatigue under symmetrical tensile–compressive loading. The simulation results show that, although the macroscopic material hysteresis curve keeps stable, the mesoscopic deformations become increasingly inhomogeneous and the statistic differences keep growing. Accordingly, further research on the underlying relation between inhomogeneous deformation and fatigue is conducted, and a systematic methodology to predict the low-cycle fatigue life is revealed.

Notes

Acknowledgements

This research was supported by the National Natural Scientific Foundation of China (Fund Nos. 11632077) and the Guangxi Science Research and Study Abroad Program for Excellent Ph.D. Students of Guangxi Zhuang Autonomous Region (2016). These financial supports are gratefully acknowledged. Further, we are truly grateful to the anonymous reviewer for the outstanding suggestions and guidance during our revision process. Especifically, Eqs. (1)–(3) are kindly guided by the anonymous reviewer.

References

  1. 1.
    Asaro, R.J., Rice, J.R.: Strain localizaion in ductile single crystals. J. Mech. Phys. Solids. 25(5), 309–338 (1977)CrossRefGoogle Scholar
  2. 2.
    Bennett, V.P., McDowell, D.L.: Polycrystal orientation distribution effects on microslip in high cycle fatigue. Int. J. Fatigue 25(1), 27–39 (2003)CrossRefGoogle Scholar
  3. 3.
    Bochenek, B., Pyrz, R.: Reconstruction methodology for planar and spatial random microstructure. In: New Challenges in Mesomechanics 2002 (2002)Google Scholar
  4. 4.
    Chaboche, J.L.: Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plast. 5(3), 247–302 (1989)CrossRefGoogle Scholar
  5. 5.
    Chan, K.S.: Roles of microstructure in fatigue crack initiation. Int. J. Fatigue 32(9), 1428–1447 (2010)CrossRefGoogle Scholar
  6. 6.
    Chan, K.S., Lee, Y.D.: Effects of deformation-induced constraint on high-cycle fatigue in Ti alloys with a duplex microstructure. Metall. Mater. Trans. A 39(7), 1665–1675 (2008)CrossRefGoogle Scholar
  7. 7.
    Ghosh, S., Anahid, M.: Homogenized constitutive and fatigue nucleation models from crystal plasticity FE simulations of Ti alloys, Part 1: macroscopic anisotropic yield function. Int. J. Plast. 47, 182–201 (2013)CrossRefGoogle Scholar
  8. 8.
    Hansen, A., Hinrichsen, E.L., Roux, S.: Scale-invariant disorder in fracture and related breakdown phenomena. Phys. Rev. B 43(1), 665 (1991)CrossRefGoogle Scholar
  9. 9.
    Hill, R., Rice, J.R.: Constitutive analysis of elastic-plastic crystals at arbitrary strain. J. Mech. Phys. Solids 20(6), 401–413 (1972)CrossRefGoogle Scholar
  10. 10.
    Huang, Y.: A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program. Division of Applied Sciences, Harvard University, Report MECH-178 (1991)Google Scholar
  11. 11.
    Hutchinson, J.W.: Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. Lond. A Math. Phys. Sci. 348(1652), 101–127 (1976)CrossRefGoogle Scholar
  12. 12.
    Kalikindi, R.S., Bronkhorst, C.A., Anand, L.: Crystallographic texture evolution in bulk deformation processing of FCC metals. J. Mech. Phys. Solids 40(3), 537–569 (1992)CrossRefGoogle Scholar
  13. 13.
    Liu, Y., Varghese, S., Ma, J., Yoshino, M., Lu, H., Komanduri, R.: Orientation effects in nanoindentation of single crystal copper. Int. J. Plast. 24(11), 1990–2015 (2008)CrossRefGoogle Scholar
  14. 14.
    Maniatty, A.M., Dawson, P.R., Lee, Y.S.: A time integration algorithm for elastoviscoplastic cubic crystals applied to modelling polycrystalline deformation. Int. J. Numer. Methods Eng. 35(8), 1565–1588 (2010)CrossRefGoogle Scholar
  15. 15.
    McDowell, D.L., Dunne, F.P.E.: Microstructure-sensitive computational modeling of fatigue crack formation. Int. J. Fatigue 32(9), 1521–1542 (2010)CrossRefGoogle Scholar
  16. 16.
    Mcgarry, J.P., O’Donnell, B.P., McHugh, P.E., McGarry, J.G.: Analysis of the mechanical performance of a cardiovascular stent design based on micromechanical modelling. Comput. Mater. Sci. 31(3), 421–438 (2004)CrossRefGoogle Scholar
  17. 17.
    Muszka, K.: Modelling of deformation inhomogeneity in the angular accumulative drawing process–multiscale approach. Mater. Sci. Eng. A 559, 635–642 (2013)CrossRefGoogle Scholar
  18. 18.
    Needleman, A., Asaro, R.J., Lemonds, J., Peirce, D.: Finite element analysis of crystalline solids. Comput. Methods Appl. Mech. Eng. 52(1), 689–708 (1985)CrossRefGoogle Scholar
  19. 19.
    Needleman, A., Tvergaard, V.: Comparison of crystal plasticity and isotropic hardening predictions for metal-matrix composites. J. Appl. Mech. 60(1), 70–76 (1993)CrossRefGoogle Scholar
  20. 20.
    Payne, J., Welsh, G., Christ Jr., R.J., Nardiello, J., Papazian, J.M.: Observations of fatigue crack initiation in 7075–T651. Int. J. Fatigue 32(2), 247–255 (2010)CrossRefGoogle Scholar
  21. 21.
    Peirce, D., Asaro, R.J., Needleman, A.: Material rate dependence and localized deformation in crystalline solids. Acta Metall. 31(12), 1951–1976 (1983)CrossRefGoogle Scholar
  22. 22.
    Prakash, A., Lebensohn, R.A.: Simulation of micromechanical behavior of polycrystals: finite elements versus fast Fourier transforms. Modell. Simul. Mater. Sci. Eng. 17(6), 64010–64016 (2009)CrossRefGoogle Scholar
  23. 23.
    Sangid, M.D.: The physics of fatigue crack initiation. Int. J. Fatigue 57, 58–72 (2013)CrossRefGoogle Scholar
  24. 24.
    Sarma, G., Zacharia, T.: Integration algorithm for modeling the elasto-viscoplastic response of polycrystalline materials. J. Mech. Phys. Solids 47(6), 1219–1238 (1999)CrossRefGoogle Scholar
  25. 25.
    Sun, C.T., Vaidya, R.S.: Prediction of composite properties from a representative volume element. Compos. Sci. Technol. 56(2), 171–179 (1996)CrossRefGoogle Scholar
  26. 26.
    Sweeney, C.A., Vorster, W., Leen, S.B., Sakurada, E., McHugh, P.E., Dunne, F.P.E.: The role of elastic anisotropy, length scale and crystallographic slip in fatigue crack nucleation. J. Mech. Phys. Solids 61(5), 1224–1240 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Tang, C.: Numerical simulation of progressive rock failure and associated seismicity. Int. J. Rock Mech. Min. Sci. 34(2), 249–261 (1997)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Xia, Z., Zhou, C., Yong, Q., Zhang, X.: On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. Int. J. Solids Struct. 43(2), 266–278 (2006)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zhang, K.S., Wu, M.S., Feng, R.: Simulation of microplasticity-induced deformation in uniaxially strained ceramics by 3-D Voronoi polycrystal modeling. Int. J. Plast. 21(4), 801–834 (2005)CrossRefGoogle Scholar
  30. 30.
    Zhang, K., Ju, J.W., Li, Z., Bai, Y.L., Brocks, W.: Micromechanics based fatigue life prediction of a polycrystalline metal applying crystal plasticity. Mech. Mater. 85, 16–37 (2015)CrossRefGoogle Scholar
  31. 31.
    Zhang, K., Shi, Y., Ju, J.W.: Grain-level statistical plasticity analysis on strain cycle fatigue of a FCC metal. Mech. Mater. 64, 76–90 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Disaster Prevention and Structural Safety, College of Civil and Architectural EngineeringGuangxi UniversityNanningChina
  2. 2.Department of Civil and Environmental EngineeringUniversity of CaliforniaLos AngelesUSA
  3. 3.College of Civil EngineeringShaoxing UniversityShaoxingChina

Personalised recommendations