Advertisement

Conservative Allen–Cahn equation with a nonstandard variable mobility

  • Junxiang Yang
  • Yibao Li
  • Chaeyoung Lee
  • Junseok KimEmail author
Original Paper
  • 64 Downloads

Abstract

In this article, we present the conservative Allen–Cahn equation with a nonstandard variable mobility. Unlike the classical variable mobility, the proposed nonstandard variable mobility has small value at the interface and large value away from the interface. As benchmark tests, we perform temporal evolutions of two droplets without velocity field, 2D droplet deformation under a simple shear flow, 2D droplet deformation under a swirling flow, and 3D droplet deformation under a shear flow. The numerical results of the proposed method demonstrate a remarkable accuracy in preserving interfaces. Moreover, the proposed method not only captures interface location but also maintains uniform interface transition layer thickness.

Notes

Acknowledgements

Y. B. Li is supported by National Natural Science Foundation of China (Nos. 11601416, 11631012). The corresponding author (J. S. Kim) was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1A2C1003053).

References

  1. 1.
    Pathak, A., Raessi, M.: A 3D, fully Eulerian, VOF-based solver to study the interaction between two fluids and moving rigid bodies using the fictitious domain method. J. Comput. Phys. 311, 87–113 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Tabar, N.S., Vasilyev, O.V.: Stabilized conservative level set method. J. Comput. Phys. 375, 1033–1044 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, Z., Shu, C., Tan, D., Niu, X.D., Li, Q.Z.: Simplified multiphase lattice Boltzmann method for simulating multiphase flows with large density ratios and complex interfaces. Phys. Rev. E 98, 063314 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Li, Y., Jung, E., Lee, W., Lee, H.G., Kim, J.: Volume preserving immersed boundary methods for two-phase fluid flows. Int. J. Numer. Methods Fluids 69, 842–858 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12, 613–661 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Lee, H.G., Kim, J.: On the long time simulation of Rayleigh–Taylor instability. Int. J. Numer. Methods Eng. 85, 1633–1647 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Alpak, F.O., Riviere, B., Frank, F.: A phase-field method for the direct simulation of two-phase flows in pore-scale media using a non-equilibrium wetting boundary condition. Comput. Geosci. 20, 881–908 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Mu, K., Si, T., Li, E., Xu, R.X., Ding, H.: Numerical study on droplet generation in axisymmetric flow focusing upon actuation. Phys. Fluids 30, 012111 (2018)CrossRefGoogle Scholar
  9. 9.
    Zhang, Y., Ye, W.: A flux-corrected phase-field method for surface diffusion. Commun. Comput. Phys. 22, 422–440 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Joshi, V., Jaiman, R.K.: A positivity preserving and conservative variational scheme for phase-field modeling of two-phase flows. J. Comput. Phys. 360, 137–166 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Brassel, M., Bretin, E.: A modified phase field approximation for mean curvature flow with conservation of the volume. Math. Mehtods Appl. Sci. 34, 1157–1180 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Jeong, D., Kim, J.S.: Conservative Allen–Cahn–Navier–Stokes system for incompressible two-phase fluid flows. Comput. Fluids 156, 239–246 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Aihara, S., Takaki, T., Takada, N.: Multi-phase-field modeling using a conservative Allen–Cahn equation for multiphase flow. Comput. Fluids 178, 141–151 (2019)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ceniceros, H., Garíca-Cervera, C.: A new approach for the numerical solution of diffusion equations with variable and degenerate mobility. J. Comput. Phys. 246, 1–10 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Tsui, Y.Y., Liu, C.Y., Lin, S.W.: Coupled level-set and volume-of-fluid method for two-phase flow calculations. Numer. Heat Transf. B 71, 173–185 (2017)CrossRefGoogle Scholar
  16. 16.
    Chiu, P.H., Lin, Y.T.: A conservative phase field method for solving incompressible two-phase flows. J. Comput. Phys. 230, 185–204 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kim, J.S., Lee, S., Choi, Y.: A conservative Allen–Cahn equation with a space–time dependent Lagrange multiplier. Int. J. Eng. Sci. 84, 11–17 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Rosti, M.E., Vita, F.D., Brandt, L.: Numerical simulations of emulsions in shear flows. Acta Mech. 230, 667–682 (2019)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kim, J.: A continuous surface tension force formulation for diffuse-interface model. J. Comput. Phys. 204, 784–804 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sheth, K.S., Pozrikidis, C.: Effects of inertia on the deformation of liquid drops in simple shear flow. Comput. Fluids 24(2), 101–19 (1995)CrossRefGoogle Scholar
  21. 21.
    Deng, Y., Liu, Z., Wu, Y.: Topology optimization of capillary, two-phase flow problems. Commun. Comput. Phys. 22, 1413–1438 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Geier, M., Fakhari, A., Lee, T.: Conservative phase-field lattice Boltzmann model for interface tracking equation. Phys. Rev. E 91, 063309 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Morvant, A., Seal, E., Walker, S.W.: A coupled Ericksen/Allen–Cahn model for liquid crystal droplets. Appl. Math. Appl. 75, 4048–4065 (2018)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Vasconcelos, D.F.M., Rossa, A.L., Coutinho, A.L.G.A.: A residual-based Allen–Cahn phase field model for the mixture of incompressible fluid flows. Int. J. Numer. Methods Fluids 75, 645–667 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Soligo, G., Roccon, A., Soldati, A.: Mass-conservation-improved phase field methods for turbulent multiphase flow simulation. Acta Mech. 230, 683–696 (2019)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Junxiang Yang
    • 1
  • Yibao Li
    • 2
  • Chaeyoung Lee
    • 1
  • Junseok Kim
    • 1
    Email author
  1. 1.Department of MathematicsKorea UniversitySeoulRepublic of Korea
  2. 2.School of Mathematics and StatisticsXi’an Jiaotong UniversityXi’anChina

Personalised recommendations