Advertisement

Nonlinear post-buckling and vibration of 2D penta-graphene composite plates

  • Nguyen Dinh DucEmail author
  • Pham Tien Lam
  • Tran Quoc Quan
  • Pham Minh Quang
  • Nguyen Van Quyen
Original Paper
  • 37 Downloads

Abstract

The newly developed penta-graphene is a two-dimensional (2D) carbon allotrope with promising mechanical properties. This paper investigates the nonlinear post-buckling and vibration of imperfect three-dimensional penta-graphene composite plates resting on elastic foundations and subjected to uniform external pressure and axial compressive load. The elastic constants of the single-layer penta-graphene are fully determined by the density functional theory by fitting the equation of strain energy to the density functional theory energy. Specifically, the elastic constant \(C_{66}\) which has not been considered by other authors is also determined. The motion and compatibility equations are derived based on the classical plate theory taking into account von Karman geometrical nonlinearity, initial geometrical imperfection and Pasternak type elastic foundations. For nonlinear post-buckling, the Bubnov–Galerkin method is applied to obtain the load–deflection amplitude curves while the Runge–Kutta method and harmonic balance method are used to obtain the deflection amplitude–time curves and the amplitude–frequency curves for nonlinear vibration. Numerical results show the effects of geometrical parameters, initial imperfection and elastic foundations on the nonlinear post-buckling and vibration of the imperfect 2D penta-graphene plates. The present results are also compared to others to validate the accuracy of the applied method and approach.

Notes

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number 107.02-2018.04. The authors are grateful for this support.

References

  1. 1.
    Zhang, S., Zhou, J., Wang, Q., Chen, X., Kawazoe, Y., Jena, P.: Penta-graphene: a new carbon allotrope. Radioelectron. Nanosyst. Inf. Technol. 7, 191–207 (2016).  https://doi.org/10.17725/rensit.2015.07.191 CrossRefGoogle Scholar
  2. 2.
    Li, Y.H., Yuan, P.F., Fan, Z.Q., Zhang, Z.H.: Electronic properties and carrier mobility for penta-graphene nanoribbons with nonmetallic-atom-terminations. Org. Electron. Phys. Mater. Appl. 59, 306–13 (2018).  https://doi.org/10.1016/j.orgel.2018.05.039 CrossRefGoogle Scholar
  3. 3.
    Enriquez, J.I.G., Villagracia, A.R.C.: Hydrogen adsorption on pristine, defected, and 3d-block transition metal-doped penta-graphene. Int. J. Hydrog. Energy 41, 12157–66 (2016).  https://doi.org/10.1016/j.ijhydene.2016.06.035 CrossRefGoogle Scholar
  4. 4.
    Krishnan, R., Wu, S.Y., Chen, H.T.: Nitrogen-doped penta-graphene as a superior catalytic activity for CO oxidation. Carbon 132, 257–62 (2018).  https://doi.org/10.1016/j.carbon.2018.02.064 CrossRefGoogle Scholar
  5. 5.
    Zhang, C.P., Li, B., Shao, Z.G.: First-principle investigation of CO and CO\(_2\) adsorption on Fe-doped penta-graphene. Appl. Surf. Sci. 469, 641–6 (2019).  https://doi.org/10.1016/j.apsusc.2018.11.072 CrossRefGoogle Scholar
  6. 6.
    Le, M.Q.: Mechanical properties of penta-graphene, hydrogenated penta-graphene, and penta-CN\(_2\) sheets. Comput. Mater. Sci. 136, 181–90 (2017).  https://doi.org/10.1016/j.commatsci.2017.05.004 CrossRefGoogle Scholar
  7. 7.
    Quijano-Briones, J.J., Fernández-Escamilla, H.N., Tlahuice-Flores, A.: Chiral penta-graphene nanotubes: structure, bonding and electronic properties. Comput. Theor. Chem. 1108, 70–5 (2017).  https://doi.org/10.1016/j.comptc.2017.03.019 CrossRefGoogle Scholar
  8. 8.
    Sun, H., Mukherjee, S., Singh, C.V.: Mechanical properties of monolayer penta-graphene and phagraphene: a first-principles study. Phys. Chem. Chem. Phys. 18, 26736–42 (2016).  https://doi.org/10.1039/c6cp04595b CrossRefGoogle Scholar
  9. 9.
    Winczewski, S., Rybicki, J.: Anisotropic mechanical behavior and auxeticity of penta-graphene: molecular statics/molecular dynamics studies. Carbon 146, 572–87 (2019).  https://doi.org/10.1016/j.carbon.2019.02.042 CrossRefGoogle Scholar
  10. 10.
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, 5188 (1964).  https://doi.org/10.1103/PhysRev.136.B864 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133 (1965).  https://doi.org/10.1103/PhysRev.140.A1133 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Som, N.N., Mankad, V.H., Dabhi, S.D., Patel, A., Jha, P.K.: Magnetic behavior study of samarium nitride using density functional theory. J. Magn. Magn. Mater. 448, 186–91 (2018).  https://doi.org/10.1016/j.jmmm.2017.10.019 CrossRefGoogle Scholar
  13. 13.
    Xin, S., Gao, W., Cao, D., Lv, K., Liu, Y., Zhao, C., et al.: The thermal transformation mechanism of chlorinated paraffins: an experimental and density functional theory study. J. Environ. Sci. (China) 75, 378–87 (2019).  https://doi.org/10.1016/j.jes.2018.05.022 CrossRefGoogle Scholar
  14. 14.
    Rapetti, D., Ferrando, R.: Density functional theory global optimization of chemical ordering in AgAu nanoalloys. J. Alloys Compd. (2019).  https://doi.org/10.1016/j.jallcom.2018.11.143 CrossRefGoogle Scholar
  15. 15.
    Liu, J., Zhang, Z., Yang, L., Fan, Y., Liu, Y.: Molecular structure and spectral characteristics of hyperoside and analysis of its molecular imprinting adsorption properties based on density functional theory. J. Mol. Graph. Model. 88, 228–36 (2019).  https://doi.org/10.1016/j.jmgm.2019.01.005 CrossRefGoogle Scholar
  16. 16.
    Rajeev Kumar, N., Radhakrishnan, R.: Electronic, optical and mechanical properties of lead-free halide double perovskites using first-principles density functional theory. Mater. Lett. 227, 289–91 (2018).  https://doi.org/10.1016/j.matlet.2018.05.082 CrossRefGoogle Scholar
  17. 17.
    Li, K., Li, H., Yan, N., Wang, T., Zhao, Z.: Adsorption and dissociation of CH\(_4\) on graphene: a density functional theory study. Appl. Surf. Sci. 459, 693–9 (2018).  https://doi.org/10.1016/j.apsusc.2018.08.084 CrossRefGoogle Scholar
  18. 18.
    Kenfack, S.C., Mounbou, S., Issofa, N., Fewo, S.I., Wirngo, A.V., Fobasso, M.F.C., et al.: Determination of the contribution of a phonon and a magnetic field to the chemical properties of the hydrogen molecule using the density functional theory approach. Phys. B Condens. Matter 560, 197–203 (2019).  https://doi.org/10.1016/j.physb.2019.02.005 CrossRefGoogle Scholar
  19. 19.
    Fujisaki, T., Staykov, A.T., Jing, Y., Leonard, K., Aluru, N.R., Matsumoto, H.: Understanding the effect of Ce and Zr on chemical expansion in yttrium doped strontium cerate and zirconate by high temperature X-ray analysis and density functional theory. Solid State Ionics 333, 1–8 (2019).  https://doi.org/10.1016/j.ssi.2019.01.009 CrossRefGoogle Scholar
  20. 20.
    Gupta, S., Dimakis, N.: Computational predictions of electronic properties of graphene with defects, adsorbed transition metal-oxides and water using density functional theory. Appl. Surf. Sci. 467–468, 760–72 (2019).  https://doi.org/10.1016/j.apsusc.2018.09.260 CrossRefGoogle Scholar
  21. 21.
    Aghajani, M., Hadipour, H., Akhavan, M.: Mechanical and chemical pressure effects on the AeFe\(_2\) As\(_2\) (Ae = Ba, Sr, Ca) compounds: density functional theory. Comput. Mater. Sci. 160, 233–44 (2019).  https://doi.org/10.1016/j.commatsci.2019.01.021 CrossRefGoogle Scholar
  22. 22.
    Maali, M., Kılıç, M., Yaman, Z., Ağcakoca, E., Aydın, A.C.: Buckling and post-buckling behavior of various dented cylindrical shells using CFRP strips subjected to uniform external pressure: comparison of theoretical and experimental data. Thin-Walled Struct. 137, 29–39 (2019).  https://doi.org/10.1016/j.tws.2018.12.042 CrossRefGoogle Scholar
  23. 23.
    Kolahchi, R., Zarei, M.S., Hajmohammad, M.H., Naddaf, O.A.: Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods. Thin-Walled Struct. 113, 162–9 (2017).  https://doi.org/10.1016/j.tws.2017.01.016 CrossRefGoogle Scholar
  24. 24.
    Shakouri, M.: Free vibration analysis of functionally graded rotating conical shells in thermal environment. Compos. Part B Eng. 163, 574–84 (2019).  https://doi.org/10.1016/j.compositesb.2019.01.007 CrossRefGoogle Scholar
  25. 25.
    Zaoui, F.Z., Ouinas, D., Tounsi, A.: New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations. Compos. Part B Eng. 159, 231–47 (2019).  https://doi.org/10.1016/j.compositesb.2018.09.051 CrossRefGoogle Scholar
  26. 26.
    Duc, N.D., Hadavinia, H., Quan, T.Q., Khoa, N.D.: Free vibration and nonlinear dynamic response of imperfect nanocomposite FG-CNTRC double curved shallow shells in thermal environment. Eur. J. Mech. A/Solids 75, 355–66 (2019).  https://doi.org/10.1016/j.euromechsol.2019.01.024 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Ghorashi, M.: Nonlinear static and stability analysis of composite beams by the variational asymptotic method. Int. J. Eng. Sci. 128, 127–50 (2018).  https://doi.org/10.1016/j.ijengsci.2018.03.011 MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Jassas, M.R., Bidgoli, M.R., Kolahchi, R.: Forced vibration analysis of concrete slabs reinforced by agglomerated SiO\(_2\) nanoparticles based on numerical methods. Construct. Build. Mater. 211, 796–806 (2019).  https://doi.org/10.1016/j.conbuildmat.2019.03.263 CrossRefGoogle Scholar
  29. 29.
    Hosseini-Hashemi, S., Khorshidi, K., Amabili, M.: Exact solution for linear buckling of rectangular Mindlin plates. J. Sound Vib. 315, 318–342 (2008).  https://doi.org/10.1016/j.jsv.2008.01.059 CrossRefGoogle Scholar
  30. 30.
    Mao, J.J., Zhang, W.: Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces. Compos. Struct. 216, 392–405 (2019).  https://doi.org/10.1016/j.compstruct.2019.02.095 CrossRefGoogle Scholar
  31. 31.
    Quan, T.Q., Duc, N.D.: Nonlinear thermal stability of eccentrically stiffened FGM double curved shallow shells. J. Therm. Stress. 5739, 1–26 (2016).  https://doi.org/10.1080/01495739.2016.1225532 CrossRefGoogle Scholar
  32. 32.
    Kolahchi, R., Hosseini, H., Esmailpour, M.: Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories. Compos. Struct. 157, 174–86 (2016).  https://doi.org/10.1016/j.compstruct.2016.08.032 CrossRefGoogle Scholar
  33. 33.
    Karami, B., Janghorban, M., Tounsi, A.: Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory. Thin-Walled Struct. 129, 251–64 (2018).  https://doi.org/10.1016/j.tws.2018.02.025 CrossRefGoogle Scholar
  34. 34.
    Ansari, M.O., Mohammad, F.: Thermal stability and electrical properties of dodecyl-benzene-sulfonic- acid doped nanocomposites of polyaniline and multi-walled carbon nanotubes. Compos. Part B Eng. 43, 3541–8 (2012).  https://doi.org/10.1016/j.compositesb.2011.11.031 CrossRefGoogle Scholar
  35. 35.
    Hajmohammad, M.H., Maleki, M., Kolahchi, R.: Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer. Soil Dyn. Earthq. Eng. 110, 18–27 (2018).  https://doi.org/10.1016/j.soildyn.2018.04.002 CrossRefGoogle Scholar
  36. 36.
    Park, M., Choi, D.H.: A two-variable first-order shear deformation theory considering in-plane rotation for bending, buckling and free vibration analyses of isotropic plates. Appl. Math. Model. 61, 49–71 (2018).  https://doi.org/10.1016/j.apm.2018.03.036 MathSciNetCrossRefGoogle Scholar
  37. 37.
    Yuan, Z., Kardomateas, G.A.: Nonlinear dynamic response of sandwich wide panels. Int. J. Solids Struct. 148–149, 110–21 (2018).  https://doi.org/10.1016/j.ijsolstr.2017.09.028 CrossRefGoogle Scholar
  38. 38.
    Kang, G.S., Kwak, B.S., Choe, H.S., Kweon, J.H.: Parametric study on the buckling load after micro-bolt repair of a composite laminate with delamination. Compos. Struct. 215, 1–12 (2019).  https://doi.org/10.1016/j.compstruct.2019.01.091 CrossRefGoogle Scholar
  39. 39.
    Kolahchi, R.: A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods. Aerosp. Sci. Technol. 66, 235–48 (2017).  https://doi.org/10.1016/j.ast.2017.03.016 CrossRefGoogle Scholar
  40. 40.
    Ong, S.P., Richards, W.D., Jain, A., Hautier, G., Kocher, M., Cholia, S., et al.: Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–9 (2013)CrossRefGoogle Scholar
  41. 41.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–30 (2011)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Volmir, A.S.: Non-linear dynamics of plates and shells. Science Edition, Nauka (1972)Google Scholar
  43. 43.
    Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Advanced Materials and Structures Laboratory, VNUHanoi - University of Engineering and TechnologyHanoiVietnam
  2. 2.National Research Laboratory, Department of Civil and Environmental EngineeringSejong UniversityGwangjin-guKorea
  3. 3.PIAS, Phenikaa UniversityHanoiVietnam
  4. 4.JAISTNomiJapan
  5. 5.NTT Institute of High TechnologyNguyen Tat Thanh UniversityHo Chi Minh cityVietnam

Personalised recommendations