Advertisement

Interaction of precipitate with shear–coupled grain boundary migration

  • Fusheng Tan
  • Qihong Fang
  • Jia LiEmail author
  • Hong Wu
Original Paper
  • 69 Downloads

Abstract

Shear-coupled grain boundary migration (SCGBM) has already been observed in extensive experiments and serves as an effective mechanism for the grain growth in nanocrystalline materials. Meanwhile, it is well known that precipitates strongly inhibit the motion of GBs. However, the effect of precipitates on SCGBM is not clear. In this paper, a theoretical model is established to investigate the role of precipitates on SCGBM. The effects of the characteristics of the precipitate and the GB are studied in detail. It is found that precipitates can significantly inhibit SCGBM. Interesting, the results show that the pinning effect exerted by precipitates on SCGBM is strongly relevant to their positions. Moreover, the resistance for SCGBM hindered by precipitates can be controlled by tailoring the characteristics of both the precipitates and GBs. In addition, it is discussed that a possible recrystallization occurs when the GB is hindered and it is found that the SCGBM process also facilitates it.

Notes

References

  1. 1.
    El-Atwani, O., Esquivel, E., Aydogan, E., Martinez, E., Baldwin, J.K., Li, M., Uberuaga, B.P., Maloy, S.A.: Unprecedented irradiation resistance of nanocrystalline tungsten with equiaxed nanocrystalline grains to dislocation loop accumulation. Acta Mater. 165, 118–128 (2019)CrossRefGoogle Scholar
  2. 2.
    Hu, J., Shi, Y.N.: Grain boundary stability governs hardening and softening in extremely-fine nanograined metals. Science 355(2), 1292 (2017)CrossRefGoogle Scholar
  3. 3.
    Li, Y., Zhang, Z., Vogt, R., Schoenung, J.M., Lavernia, E.J.: Boundaries and interfaces in ultrafine grain composites. Acta Mater. 59(19), 7206–7218 (2011)CrossRefGoogle Scholar
  4. 4.
    Barai, P., Weng, G.J.: Mechanics of very fine-grained nanocrystalline materials with contributions from grain interior, GB zone, and grain-boundary sliding. Int. J. Plast. 25(12), 2410–2434 (2009)CrossRefGoogle Scholar
  5. 5.
    Fan, G.J., Fu, L.F., Choo, H., Liaw, P.K., Browning, N.D.: Uniaxial tensile plastic deformation and grain growth of bulk nanocrystalline alloys. Acta Mater. 54(18), 4781–4792 (2006)CrossRefGoogle Scholar
  6. 6.
    Fang, T.H., Li, W.L., Tao, N.R., Lu, K.: Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331(6024), 1587–1590 (2011)CrossRefGoogle Scholar
  7. 7.
    Wu, X.L., Zhu, Y.T., Wei, Y.G., Wei, Q.: Strong strain hardening in nanocrystalline nickel. Phys. Rev. Lett. 103(20), 205504 (2009)CrossRefGoogle Scholar
  8. 8.
    Wei, Y., Li, Y., Zhu, L., Liu, Y., Lei, X., Wang, G., Wu, Y., Mi, Z., Liu, J., Wang, H.: Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nat. Commun. 5(4), 3580 (2014)CrossRefGoogle Scholar
  9. 9.
    Bobylev, S.V., Ovid’Ko, I.A.: Stress-driven migration of deformation-distorted grain boundaries in nanomaterials. Acta Mater. 88, 260–270 (2015)CrossRefGoogle Scholar
  10. 10.
    Li, J., Soh, A.K.: Synergy of grain boundary sliding and shear-coupled migration process in nanocrystalline materials. Acta Mater. 61(14), 5449–5457 (2013)CrossRefGoogle Scholar
  11. 11.
    Gutkin, M.Y., Ovid’Ko, I.A.: Grain boundary migration as rotational deformation mode in nanocrystalline materials. Appl. Phys. Lett. 87(25), 251916 (2005)CrossRefGoogle Scholar
  12. 12.
    Gorkaya, T., Molodov, D.A., Gottstein, G.: Stress-driven migration of symmetrical 1 0 0 tilt grain boundaries in Al bicrystals. Acta Mater. 57(18), 5396–5405 (2009)CrossRefGoogle Scholar
  13. 13.
    Mompiou, F., Caillard, D., Legros, M.: Grain boundary shear–migration coupling—I. In situ TEM straining experiments in Al polycrystals. Acta Mater. 57(7), 2198–2209 (2009)CrossRefGoogle Scholar
  14. 14.
    Rajabzadeh, A., Legros, M., Combe, N., Mompiou, F., Molodov, D.A.: Evidence of grain boundary dislocation step motion associated to shear-coupled grain boundary migration. Philos. Mag. 93(10–12), 1299–1316 (2013)CrossRefGoogle Scholar
  15. 15.
    Bobylev, S.V., Ovid’ko, I.A.: Stress-driven migration, convergence and splitting transformations of grain boundaries in nanomaterials. Acta Mater. 124, 333–342 (2017)CrossRefGoogle Scholar
  16. 16.
    Cahn, J.W., Mishin, Y., Suzuki, A.: Coupling grain boundary motion to shear deformation. Acta Mater. 54(19), 4953–4975 (2006)CrossRefGoogle Scholar
  17. 17.
    He, M.-R., Samudrala, S.K., Kim, G., Felfer, P.J., Breen, A.J., Cairney, J.M., Gianola, D.S.: Linking stress-driven microstructural evolution in nanocrystalline aluminium with grain boundary doping of oxygen. Nat. Commun. 7, 11225 (2016)CrossRefGoogle Scholar
  18. 18.
    Ovid’ko, I.A., Sheinerman, A.G.: Free surface effects on stress-driven grain boundary sliding and migration processes in nanocrystalline materials. Acta Mater. 121, 117–125 (2016)CrossRefGoogle Scholar
  19. 19.
    Thomas, S.L., Chen, K., Han, J., Purohit, P.K., Srolovitz, D.J.: Reconciling grain growth and shear-coupled grain boundary migration. Nat. Commun. 8(1), 1764 (2017)CrossRefGoogle Scholar
  20. 20.
    Wang, X., Zeng, W., Hong, L., Xu, W., Yang, H., Wang, F., Duan, H., Tang, M., Jiang, H.: Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy 3(3), 227 (2018)CrossRefGoogle Scholar
  21. 21.
    Zhang, Y., Tucker, G.J., Trelewicz, J.R.: Stress-assisted grain growth in nanocrystalline metals: Grain boundary mediated mechanisms and stabilization through alloying. Acta Mater. 131, 39–47 (2017)CrossRefGoogle Scholar
  22. 22.
    Li, J., Soh, A.K.: On shear-coupled migration of grain boundaries in nanocrystalline materials. Appl. Phys. Lett. 101(24), 241915 (2012)CrossRefGoogle Scholar
  23. 23.
    Ivanov, V.A., Mishin, Y.: Dynamics of grain boundary motion coupled to shear deformation: an analytical model and its verification by molecular dynamics. Phys. Rev. B Condens. Matter 78(6), 064106 (2008)CrossRefGoogle Scholar
  24. 24.
    Li, X., Wei, Y., Lu, L., Lu, K., Gao, H.: Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464(7290), 877 (2010)CrossRefGoogle Scholar
  25. 25.
    Lu, L., Chen, X., Huang, X., Lu, K.: Revealing the maximum strength in nanotwinned copper. Science 323(5914), 607–610 (2009)CrossRefGoogle Scholar
  26. 26.
    Shen, Y.F., Lu, L., Lu, Q.H., Jin, Z.H., Lu, K.: Tensile properties of copper with nano-scale twins. Scr. Mater. 52(10), 989–994 (2005)CrossRefGoogle Scholar
  27. 27.
    Koju, R.K., Darling, K.A., Solanki, K.N., Mishin, Y.: Atomistic modeling of capillary-driven grain boundary motion in Cu–Ta alloys. Acta Mater. 148, 311–319 (2018)CrossRefGoogle Scholar
  28. 28.
    Ma, K., Tao, H., Yang, H., Topping, T., Yousefiani, A., Lavernia, E.J., Schoenung, J.M.: Coupling of dislocations and precipitates: impact on the mechanical behavior of ultrafine grained Al–Zn–Mg alloys. Acta Mater. 103(15), 153–164 (2016)CrossRefGoogle Scholar
  29. 29.
    Jian, Z., Li, W., Zhao, B., Ren, F.: Direct measurement of the maximum pinning force during particle-grain boundary interaction via molecular dynamics simulations. Acta Mater. 148, 1–8 (2018)CrossRefGoogle Scholar
  30. 30.
    Dorin, T., Wood, K., Taylor, A., Hodgson, P., Stanford, N.: Effect of coiling treatment on microstructural development and precipitate strengthening of a strip cast steel. Acta Mater. 115, 167–177 (2016)CrossRefGoogle Scholar
  31. 31.
    Humphreys, F.J., Ardakani, M.G.: Grain boundary migration and Zener pinning in particle-containing copper crystals. Acta Mater. 44(7), 2717–2727 (1996)CrossRefGoogle Scholar
  32. 32.
    Smith, C.S.: Grains, phases, and interphases: an interpretation of microstructure. Metall. Technol. 175, 15–51 (1948)Google Scholar
  33. 33.
    Kirklin, S., Saal, J.E., Hegde, V.I., Wolverton, C.: High-throughput computational search for strengthening precipitates in alloys. Acta Mater. 102, 125–135 (2016)CrossRefGoogle Scholar
  34. 34.
    Kad, B.K., Hazzledine, P.M.: Monte Carlo simulations of grain growth and Zener pinning. Mater. Sci. Eng. A 238(1), 70–77 (1997)CrossRefGoogle Scholar
  35. 35.
    Gladman, T.: On the theory of the effect of precipitate particles on grain growth in metals. Proc. R. Soc. Lond. 294(1438), 298–309 (1966)CrossRefGoogle Scholar
  36. 36.
    Nes, E., Ryum, N., Hunderi, O.: On the Zener drag. Acta Metall. 33(1), 11–22 (1985)CrossRefGoogle Scholar
  37. 37.
    Barnett, M.R., Wang, H., Guo, T.: An Orowan precipitate strengthening equation for mechanical twinning in Mg. Int. J. Plast. 112, 108–122 (2019)CrossRefGoogle Scholar
  38. 38.
    Tang, S., Xin, T., Xu, W., Miskovic, D., Sha, G., Quadir, Z., Ringer, S., Nomoto, K., Birbilis, N., Ferry, M.: Precipitation strengthening in an ultralight magnesium alloy. Nat. Commun. 10(1), 1003 (2019)CrossRefGoogle Scholar
  39. 39.
    He, J.Y., Wang, H., Huang, H.L., Xu, X.D., Chen, M.W., Wu, Y., Liu, X.J., Nieh, T.G., An, K., Lu, Z.P.: A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102, 187–196 (2016)CrossRefGoogle Scholar
  40. 40.
    Fang, Q.H., Liu, Y.W.: Size-dependent elastic interaction of a screw dislocation with a circular nano-inhomogeneity incorporating interface stress. Scr. Mater. 55(1), 99–102 (2006)CrossRefGoogle Scholar
  41. 41.
    Fang, Q.H., Li, L., Jia, L., Hongyu, W., Zaiwang, H., Bin, L., Yong, L., Liaw, P.K.: A statistical theory of probability-dependent precipitation strengthening in metals and alloys. J. Mech. Phys. Solids 122, 177–189 (2019)CrossRefGoogle Scholar
  42. 42.
    Koju, R.K., Darling, K.A., Kecskes, L.J., Mishin, Y.: Zener pinning of grain boundaries and structural stability of immiscible alloys. JOM 68(6), 1596–1604 (2016)CrossRefGoogle Scholar
  43. 43.
    Song, K., Aindow, M.: Grain growth and particle pinning in a model Ni-based superalloy. Mater. Sci. Eng. A 479(1–2), 365–372 (2008)CrossRefGoogle Scholar
  44. 44.
    Wörner, C.H., Hazzledine, P.M.: Grain growth stagnation by inclusions or pores. JOM 44(9), 16–20 (1992)CrossRefGoogle Scholar
  45. 45.
    Gutkin, M.Y., Kolesnikova, A.L., Ovid’Ko, I.A., Skiba, N.V.: Rotational deformation mechanism in fine-grained materials prepared by severe plastic deformation. J. Metastab. Nanocryst. Mater. 12(12), 47–58 (2002)Google Scholar
  46. 46.
    Romanov, A.E., Vladimirov, V.I.: Disclinations in solids. Phys. Status Solidi 78(1), 11–34 (2010)CrossRefGoogle Scholar
  47. 47.
    Gutkin, M.Y., Kolesnikova, A.L., Ovidko, I.A., Skiba, N.V.: Rotational deformation mechanism in fine-grained materials prepared by severe plastic deformation. J. Metastab. 12(12), 47–58 (2002)Google Scholar
  48. 48.
    Ringer, S.P., Li, W.B., Easterling, K.E.: On the interaction and pinning of grain boundaries by cubic shaped precipitate particles. Acta Metall. 37(3), 831–841 (1989)CrossRefGoogle Scholar
  49. 49.
    Schäfer, J., Albe, K.: Competing deformation mechanisms in nanocrystalline metals and alloys: coupled motion versus grain boundary sliding. Acta Mater. 60(17), 6076–6085 (2012)CrossRefGoogle Scholar
  50. 50.
    Caillard, D., Mompiou, F., Legros, M.: Grain-boundary shear-migration coupling. II. Geometrical model for general boundaries. Acta Mater. 57(8), 2390–2402 (2009)CrossRefGoogle Scholar
  51. 51.
    Mompiou, F., Legros, M., Caillard, D.: SMIG model: a new geometrical model to quantify grain boundary-based plasticity. Acta Mater. 58(10), 3676–3689 (2010)CrossRefGoogle Scholar
  52. 52.
    Chan, H.M., Humphreys, F.J.: Effect of particle stimulated nucleation on orientation of recrystallized grains. Metal Sci. J. 18(11), 527–530 (2013)CrossRefGoogle Scholar
  53. 53.
    Wusatowska-Sarnek, A.M., Miura, H., Sakai, T.: Nucleation and microtexture development under dynamic recrystallization of copper. Mater. Sci. Eng. A 323(1), 177–186 (2002)CrossRefGoogle Scholar
  54. 54.
    Robson, J.D., Henry, D.T., Davis, B.: Particle effects on recrystallization in magnesium-manganese alloys: particle-stimulated nucleation. Acta Mater. 57(9), 2739–2747 (2009)CrossRefGoogle Scholar
  55. 55.
    Pereloma, E.V., Mannan, P., Casillas, G., Saleh, A.A.: Particle stimulated nucleation during dynamic and metadynamic recrystallisation of Ni–30%Fe–Nb–C alloy. Mater. Charact. 125, 94–98 (2017)CrossRefGoogle Scholar
  56. 56.
    Saifei, Z., Zeng, W., Zhou, D., Lai, Y., Qinyang, Z.: The particle stimulated nucleation in Ti–35V–15Cr–0.3Si–0.1C alloy. Mater. Lett. 166, 317–320 (2016)CrossRefGoogle Scholar
  57. 57.
    Sakai, Taku, Belyakov, Andrey, Kaibyshev, Rustam, Miura, Hiromi, Jonas, John, J.: Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 60(1), 130–207 (2014)CrossRefGoogle Scholar
  58. 58.
    Chan, H.M., Humphreys, F.J.: The recrystallisation of aluminium-silicon alloys containing a bimodal particle distribution. Acta Metall. 32(2), 235–243 (1984)CrossRefGoogle Scholar
  59. 59.
    Devaraj, A., Wang, W., Vemuri, R., Kovarik, L., Jiang, X., Bowden, M., Trelewicz, J.R., Mathaudhu, S., Rohatgi, A.: Grain boundary segregation and intermetallic precipitation in coarsening resistant nanocrystalline aluminum alloys. Acta Mater. 165, 698–708 (2019)CrossRefGoogle Scholar
  60. 60.
    Shen, Y.F., Guan, R.G., Zhao, Z.Y., Misra, R.D.K.: Ultrafine-grained Al–0.2Sc–0.1Zr alloy: the mechanistic contribution of nano-sized precipitates on grain refinement during the novel process of accumulative continuous extrusion. Acta Mater. 100, 247–255 (2015)CrossRefGoogle Scholar
  61. 61.
    Wu, H., Wen, S.P., Huang, H., Li, B.L., Wu, X.L., Gao, K.Y., Wang, W., Nie, Z.R.: Effects of homogenization on precipitation of Al 3 (Er,Zr) particles and recrystallization behavior in a new type Al–Zn–Mg–Er–Zr alloy. Mater. Sci. Eng. A 689(Complete), 313–322 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyHunan UniversityChangshaPeople’s Republic of China
  2. 2.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations