Advertisement

A general dynamic theoretical model of elastic micro-structures with consideration of couple stress effects and its application in mechanical analysis of size-dependent properties

  • Yilin Qu
  • Peng LiEmail author
  • Feng JinEmail author
Original Paper
  • 100 Downloads

Abstract

A general and systematic theoretical framework of elastic micro-structures is established with the aid of modified couple stress theory for investigating the size-dependent property in small scale, in which the size-dependence is considered by introducing a material length scale parameter. Mathematically, dynamic governing equations and corresponding boundary conditions are derived and simplified by using single power series expansion for a micro-plate and double power series expansion for a micro-beam. It is demonstrated that this method exhibits extraordinary superiority, i.e., different vibration modes can be extracted easily from artificial truncations. This theoretical model can be reduced to some classical cases, including the Bernoulli–Euler beam, Timoshenko beam, Kirchhoff plate and Mindlin plate, if some specific assumptions are made. After validation, a systematic numerical investigation is carried out, which focuses on the couple stress effect on shear resonance of a cantilever micro-plate. Finally, a methodology for proposing the critical size that distinguishes micro-scale from macro-scale is illustrated in detail.

Notes

Acknowledgements

The authors gratefully acknowledge the supports by Natural Science Foundation of China (11672223 and 11972276), Natural Science Foundation of Shaanxi Province of China (2018JM1039), and Project Funded by China Postdoctoral Science Foundation (2018M640975), Opening Project from the State Key Laboratory for Strength and Vibration of Mechanical Structures (SV2018-KF-36), and the Postgraduate Research Fund of Shaanxi Province of China.

References

  1. 1.
    Ho, C.M., Tai, Y.C.: Micro-electro-mechanical-systems (MEMS) and fluid flows. Annu. Rev. Fluid Mech. 30, 579–612 (1998)CrossRefGoogle Scholar
  2. 2.
    Rebeiz, G.M., Muldavin, J.B.: RF MEMS switches and switch circuits. IEEE Microwave Mag. 2, 59–71 (2011)CrossRefGoogle Scholar
  3. 3.
    Wang, W.J., Li, P., Jin, F.: Two-dimensional linear elasticity theory of magneto-electro-elastic plates considering surface and nonlocal effects for nanoscale device applications. Smart Mater. Struct. 25, 095026 (2016)CrossRefGoogle Scholar
  4. 4.
    Wang, W.J., Li, P., Jin, F., Wang, J.: Vibration analysis of piezoelectric ceramic circular nanoplates considering surface and nonlocal effects. Compos. Struct. 140, 758–775 (2016)CrossRefGoogle Scholar
  5. 5.
    Wang, W.J., Li, P., Jin, F.: An analytical model of a broadband magnetic energy nanoharvester array with consideration of flexoelectricity and surface effect. J. Phys. D Appl. Phys. 51, 155304 (2018)CrossRefGoogle Scholar
  6. 6.
    Li, M., Tang, H.X., Roukes, M.L.: Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat. Nanotechnol. 2, 114–120 (2007)CrossRefGoogle Scholar
  7. 7.
    Li, X., Bhushan, B., Takashima, K., Baek, C.W., Kim, Y.K.: Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Ultramicroscopy 97, 481–494 (2003)CrossRefGoogle Scholar
  8. 8.
    Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)zbMATHCrossRefGoogle Scholar
  9. 9.
    Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)CrossRefGoogle Scholar
  10. 10.
    Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)zbMATHCrossRefGoogle Scholar
  11. 11.
    Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)CrossRefGoogle Scholar
  13. 13.
    Koiter, W.T.: Couple-stresses in the theory of elasticity. Proc. K. Ned. Akad. Wet. B 67, 17–44 (1964)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Mindlin, R.D.: Influence of couple-stresses on stress concentrations. Exp. Mech. 3, 1–7 (1963)CrossRefGoogle Scholar
  16. 16.
    Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Toupin, R.A.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Gao, X.-L., Mahmoud, F.F.: A new Bernoulli–Euler beam model incorporating microstructure and surface energy effects. Z. Angew. Math. Phys. 65, 393–404 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Gao, X.-L.: A new Timoshenko beam model incorporating microstructure and surface energy effects. Acta Mech. 226, 457–474 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Gao, X.-L., Zhang, G.Y.: A non-classical Kirchhoff plate model incorporating microstructure, surface energy and foundation effects. Contin. Mech. Thermodyn. 28, 195–213 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Gao, X.-L., Zhang, G.Y.: A non-classical Mindlin plate model incorporating microstructure, surface energy and foundation effects. Proc. R. Soc. A 472, 20160275 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Hadjesfandiari, A.R., Dargush, G.F.: Couple stress theory for solids. Int. J. Solids Struct. 48, 2496–2510 (2011)CrossRefGoogle Scholar
  23. 23.
    Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)zbMATHCrossRefGoogle Scholar
  24. 24.
    Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)zbMATHCrossRefGoogle Scholar
  25. 25.
    Park, S.K., Gao, X.-L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)CrossRefGoogle Scholar
  26. 26.
    Ma, H.M., Gao, X.-L., Reddy, J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Tsiatas, G.C.: A new Kirchhoff plate model based on a modified couple stress theory. Int. J. Solids Struct. 46, 2757–2764 (2009)zbMATHCrossRefGoogle Scholar
  28. 28.
    Ma, H.M., Gao, X.-L., Reddy, J.N.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220, 217–235 (2011)zbMATHCrossRefGoogle Scholar
  29. 29.
    Park, S.K., Gao, X.-L.: Variational formulation of a modified couple stress theory and its application to a simple shear problem. Z. Angew. Math. Phys. 59, 904–917 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Zhang, G.Y., Gao, X.-L., Wang, J.Z.: A non-classical model for circular Kirchhoff plates incorporating microstructure and surface energy effects. Acta Mech. 226, 4073–4085 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Zhou, S.-S., Gao, X.-L.: A non-classical model for circular Mindlin plates based on a modified couple stress theory. ASME J. Appl. Mech. 81, 051014 (2014)CrossRefGoogle Scholar
  32. 32.
    Zhang, G.Y., Gao, X.-L., Ding, S.R.: Band gaps for wave propagation in 2-D periodic composite structures incorporating microstructure effects. Acta Mech. 229, 4199–4214 (2018)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Wang, J., Yang, J.S.: Higher-order theories of piezoelectric plates and applications. Appl. Mech. Rev. 53, 87–99 (2000)CrossRefGoogle Scholar
  34. 34.
    Li, N., Qian, Z.H., Yang, J.S.: Two-dimensional equations for piezoelectric thin-film acoustic wave resonators. Int. J. Solids Struct. 110–111, 170–177 (2017)CrossRefGoogle Scholar
  35. 35.
    Tiersten, H.F.: Linear Piezoelectric Plate Vibrations. Plenum, New York (1969)CrossRefGoogle Scholar
  36. 36.
    Lee, P.C.Y., Yu, J.D.: Governing equations for a piezoelectric plate with graded properties across the thickness. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 236–250 (1998)CrossRefGoogle Scholar
  37. 37.
    Mindlin, R.D., Yang, J.S.: An Introduction to the Mathematical Theory of Vibrations of Elastic Plates. World Scientific, Singapore (2006)CrossRefGoogle Scholar
  38. 38.
    Yang, J.S.: The Mechanics of Piezoelectric Structures. World Scientific, Singapore (2006)CrossRefGoogle Scholar
  39. 39.
    Hadjesfandiari, Ali R., Dargush, Gary F.: Couple stress theory for solids. Int. J. Solids Struct. 48, 2496–2510 (2011)CrossRefGoogle Scholar
  40. 40.
    Hadjesfandiari, Ali R., Dargush, Gary F.: Fundamental solutions for isotropic size-dependent couple stress elasticity. Int. J. Solids Struct. 50, 1253–1265 (2013)CrossRefGoogle Scholar
  41. 41.
    Lee, P.C.Y., Yu, J.D., Lin, W.S.: A new two-dimensional theory for vibrations of piezoelectric crystal plates with electroded faces. J. Appl. Phys. 83, 1213–1223 (1988)CrossRefGoogle Scholar
  42. 42.
    Lee, P.C.Y., Syngellakis, S., Hou, J.P.: A two dimensional theory for highfrequency vibrations of piezoelectric crystal plates with or without electrodes. J. Appl. Phys. 61, 1249–1262 (1987)CrossRefGoogle Scholar
  43. 43.
    Radousky, H.B., Liang, H.: Energy harvesting: an integrated view of materials, devices and applications. Nanotechnology 23, 502001 (2012)CrossRefGoogle Scholar
  44. 44.
    Wang, Z.L.: Towards self-powered nanosystems: from nanogenerators to nanopiezotronics. Adv. Funct. Mater. 18, 3553–3567 (2008)CrossRefGoogle Scholar
  45. 45.
    Li, P., Jin, F., Ma, J.: Mechanical analysis on extensional and flexural deformations of a thermo-piezoelectric crystal beam with rectangular cross section. Eur. J. Mech. A Solids 55, 35–44 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Zhang, C.L., Chen, W.Q., Li, J.Y., Yang, J.S.: One-dimensional equations for piezoelectromagnetic beams and magnetoelectric effects in fibers. Smart Mater. Struct. 18, 095026 (2009)CrossRefGoogle Scholar
  47. 47.
    Yang, J.S.: Equations for the extension and flexure of a piezoelectric beam with rectangular cross section and applications. Int. J. Appl. Electromagn. Mech. 9, 409–420 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory for Strength and Vibration of Mechanical Structures, School of AerospaceXi’an Jiaotong UniversityXi’anChina
  2. 2.Department of Civil EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations