Deformation of a spatial elastica constrained inside a springy tube

  • Jen-San ChenEmail author
  • Der-Wei Chen
Original Paper


Most previous works on spatial elastica constrained inside a tube assumed that the tube wall is rigid. This assumption is not adequate when it involves human artery and tissue. In this paper, we study the deformation of a clamped–clamped rod constrained within a straight flexible tube. The reactive force exerted on the rod is assumed to be only in the radial direction and proportional to the radial displacement of the tube wall at the contact point. The results are compared with those of a rigid tube. The complicated deformations, which change from contact to non-contact within a tight range, can exist only when the tube is rigid. As the tube becomes more flexible, the dramatic variation of contact and non-contact tends to be eased off. It is shown that the peculiar phenomenon of concentrated force pairs on the edges of line-contact segment in the rigid tube model can be captured by the springy wall model as the spring constant approaches infinity. It is also found that the maximum lateral protrusion of the flexible tube does not necessarily occur at the midpoint of the rod.



  1. 1.
    Lubinski, A.: A Study of the Buckling of Rotary Drilling Strings. Drilling and Production Practice. American Petroleum Institute, Washington, D.C. (1950)Google Scholar
  2. 2.
    Schneider, P.A.: Endovascular Skills: Guidewire and Catheter Skills for Endovascular Surgery. Marcel Dekker Inc, New York (2003)CrossRefGoogle Scholar
  3. 3.
    Mahvash, M., Dupont, P.E.: Stiffness control of surgical continuum manipulators. IEEE Trans. Robot. 27, 334–345 (2011)CrossRefGoogle Scholar
  4. 4.
    Lubinski, A., Althouse, W.S., Logan, J.L.: Helical buckling of tubing sealed in packers. J. Pet. Technol. 225, 650–670 (1962)Google Scholar
  5. 5.
    Mitchell, R.F.: Buckling behavior of well tubing: the packer effect. Soc. Pet. Eng. J. 22, 616–624 (1982)CrossRefGoogle Scholar
  6. 6.
    Cheatham, J.B., Pattillo, P.D.: Helical postbuckling configuration of a weightless column under the action of an axial load. Soc. Pet. Eng. J. 24, 467–472 (1984)CrossRefGoogle Scholar
  7. 7.
    Tan, X.C., Forsman, B.: Buckling of slender string in cylindrical tube under axial load: experiments and theoretical analysis. Exp. Mech. 35, 55–60 (1995)CrossRefGoogle Scholar
  8. 8.
    Paslay, P.R., Bogy, D.B.: The stability of a circular rod laterally constrained to be in contact with an inclined circular cylinder. ASME J. Appl. Mech. 31, 605–610 (1966)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dawson, R., Paslay, P.R.: Drillpipe buckling in inclined holes. J. Pet. Technol. 36, 1734–1738 (1984)CrossRefGoogle Scholar
  10. 10.
    Tan, X.C., Digby, P.J.: Buckling of drill string under the action of gravity and axial thrust. Int. J. Solids Struct. 30, 2675–2691 (1993)CrossRefzbMATHGoogle Scholar
  11. 11.
    Wu, J., Juvkam-Wold, H.C.: Helical buckling of pipes in extended reach and horizontal wells. Part 2. Frictional drag analysis. ASME J. Energy Resour. 115, 196–201 (1993)CrossRefGoogle Scholar
  12. 12.
    Miska, S., Cunha, J.C.: An analysis of helical buckling of tubulars subjected to axial and torsional loading in inclined wellbore. In: Proceeding SPE Production and Operations Symposium, SPE 29460, Oklahoma City, OK, April 2–4 (1995)Google Scholar
  13. 13.
    Huang, N.C., Pattillo, P.D.: Helical buckling of a tube in an inclined wellbore. Int. J. Nonlinear Mech. 35, 911–923 (2000)CrossRefzbMATHGoogle Scholar
  14. 14.
    Martinez, A., Miska, S., Kuru, E., Sorem, J.: Experimental evaluation of the lateral contact force in horizontal wells. ASME J. Energy Resour. 122, 123–128 (2000)CrossRefGoogle Scholar
  15. 15.
    McCourt, I., Truslove, T., Kubie, J.: Penetration of tubulars drill pipes in horizontal oil wells. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 216, 1237–1245 (2002)CrossRefGoogle Scholar
  16. 16.
    Miller, J.T., Su, T., Pabon, J., Wicks, N., Bertoldi, K., Reis, P.M.: Buckling of a thin elastic rod inside a horizontal cylindrical constraint. Extreme Mech. Lett. 3, 36–44 (2015)CrossRefGoogle Scholar
  17. 17.
    Miller, J.T., Su, T., Dussan, E.B., Dussan, V., Pabon, J., Wicks, N., Bertoldi, K., Reis, P.M.: Buckling-induced lock-up of a slender rod injected into a horizontal cylinder. Int. J. Solids Struct. 72, 153–164 (2015)CrossRefGoogle Scholar
  18. 18.
    Liu, J.-P., Zhong, X.-Y., Cheng, Z.-B., Feng, X.-Q., Ren, G.-X.: Buckling of a slender rod confined in a circular tube: theory, simulation, and experiment. Int. J. Mech. Sci. 140, 288–305 (2018)CrossRefGoogle Scholar
  19. 19.
    Xiao, J., Chen, Y., Lu, X., Xu, B., Chen, X., Xu, J.: Three dimensional buckling beam under cylindrical constraint. Int. J. Mech. Sci. 150, 348–355 (2018)CrossRefGoogle Scholar
  20. 20.
    Wu, J., Juvkam-Wold, H.C.: The effect of wellbore curvature on tubular buckling and lockup. J. Energy Resour. Technol. 117, 214–218 (1995)CrossRefGoogle Scholar
  21. 21.
    Kuru, E., Martinez, A., Miska, S., Qiu, W.: The buckling behavior of pipes and its influence on the axial force transfer in directional wells. ASME J. Energy Resour. 122, 129–135 (2000)CrossRefGoogle Scholar
  22. 22.
    van der Heijden, G.H.M.: The static deformation of a twisted elastic rod constrained to lie on a cylinder. Proc. R. Soc. Lond. A 457, 695–715 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    van der Heijden, G.H.M., Champneys, A.R., Thompson, J.M.T.: Spatially complex localisation in twisted elastic rods constrained to a cylinder. Int. J. Solids Struct. 39, 1863–1883 (2002)CrossRefzbMATHGoogle Scholar
  24. 24.
    van der Heijden, G.H.M.: Helical collapse of a whirling elastic rod forced to lie on a cylinder. ASME J. Appl. Mech. 70, 771–774 (2003)CrossRefzbMATHGoogle Scholar
  25. 25.
    Thompson, J.M.T., Silveria, M., van der Heijden, G.H.M., Weircigroch, M.: Helical post-buckling of a rod in a cylinder: with applications to drill-strings. Proc. R. Soc. A 468, 1591–1614 (2012)CrossRefGoogle Scholar
  26. 26.
    Feodosyev, V.I.: Selected Problems and Questions in Strength of Materials. Mir, Moscow (1977). Translated from the Russian by M. KonyaevazbMATHGoogle Scholar
  27. 27.
    Sorenson, K.G., Cheatham Jr., J.B.: Post-buckling behavior of a circular rod constrained within a circular cylinder. ASME J. Appl. Mech. 53, 929–934 (1986)CrossRefzbMATHGoogle Scholar
  28. 28.
    Chen, J.-S., Li, H.-C.: On an elastic rod inside a slender tube under end twisting moment. ASME J. Appl. Mech. 78, 041009 (2011)CrossRefGoogle Scholar
  29. 29.
    Chen, J.-S., Fang, J.: Deformation sequence of a constrained spatial buckled beam under edge thrust. Int. J. Non-Linear Mech. 55, 98–101 (2013)CrossRefGoogle Scholar
  30. 30.
    Chen, J.-S., Li, S.-Y.: A twisted elastica constrained inside a tube. Eur. J. Mech. A Solids 44, 61–74 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Fang, J., Li, S.-Y., Chen, J.-S.: On a compressed spatial elastica constrained inside a tube. Acta Mech. 224, 2635–2647 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Hetenyi, M.: Beams on Elastic Foundation. The University of Michigan Press, Ann Arbor (1946)zbMATHGoogle Scholar
  33. 33.
    Jansen, J.D.: Non-linear rotor dynamics as applied to oil well drillstring vibrations. J. Sound Vib. 147, 115–135 (1991)CrossRefGoogle Scholar
  34. 34.
    Rybacki, E., Reinicke, A., Meier, T., Makasi, M., Drese, G.: What controls the mechanical properties of shale rocks? Part I: strength and Young’s modulus. J. Pet. Sci. Eng. 135, 702–722 (2015)CrossRefGoogle Scholar
  35. 35.
    Gholipour, A., Ghayesh, M.H., Zander, A.: Nonlinear biomechanics of bifurcated atherosclerotic coronary arteries. Int. J. Eng. Sci. 133, 60–83 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Craiem, D., Casciaro, M.E., Graf, S., Glaser, C.E., Gurfinkel, E.P., Armentano, R.L.: Coronary arteries simplified with 3D cylinders to assess true bifurcation angles in atherosclerotic patients. Cardiovassc. Eng. 9, 127–133 (2009)CrossRefGoogle Scholar
  37. 37.
    Hirai, T., Sasayama, S., Kawasaki, T., Yagi, S.-I.: Stiffness of systemic arteries in patients with myocardial-infarction–a noninvasive method to predict severity of coronary atherosclerosis. Circulation 80, 78–86 (1989)CrossRefGoogle Scholar
  38. 38.
    Tran, J.S., Schiavazzi, D.E., Kahn, A.M., Marsden, A.L.: Uncertainty quantification of simulated biomechanical stimuli in coronary artery bypass grafts. Comput. Methods Appl. Mech. Eng. 345, 402–428 (2019)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations