Advertisement

Acta Mechanica

, Volume 230, Issue 12, pp 4435–4451 | Cite as

Fracture analysis of superconducting composites with a sandwich structure based on electromagnetic–thermal coupled model

  • Y. Q. Wang
  • K. F. WangEmail author
  • B. L. Wang
  • L. ZhengEmail author
  • C. W. Zhang
Original Paper
  • 23 Downloads

Abstract

This paper analyzes a multilayer structure with a superconducting layer in the center and strengthening layers in the outer part. This represents a generalized structural form of multilayered high-temperature superconducting cable structures for space solar power station application. An analytical model for considering the influences of thermal–mechanical–electrical–magnetic coupling and the temperature on the stress distribution will be developed. The superposition method is used to solve the temperature distribution problem. After the temperature field is calculated, the magnetic field using a critical state model that considers the temperature effect will be developed. Finally, we analyzed the influence of material properties on the thermal and magnetically induced stress intensity factors in trapped field, zero field cooling and field cooling. Results show that the stress intensity factors induced either by thermal stress or by the Lorentz force must not be neglected. If the elastic module or the thickness of substrate layer increases, the stress intensity factor induced by thermal stress increases, while the one induced by the Lorentz force declines. Importantly, when reducing the thickness of the substrate layer, the total stress intensity factor will decrease at the early stage of heat conduction but increase at the late stage of heat conduction. This fact indicates that that thicker substrate layer is not always good from the reliability point of view.

Notes

Acknowledgements

This research was supported by Research Innovation Fund of Shenzhen City of China (Project Nos. JCYJ20170811160538023, JCYJ20170413104256729) and the National Natural Science Foundation of China (Project Nos. 11972137, 11972133, 11602072, 11672084).

References

  1. 1.
    Sakai, S., Oguni, K., Ohashi, S.: Effect of the magnetic configuration on the rotational motion in the attractive-type HTS-permanent magnet hybrid bearing. IEEE Trans. Appl. Supercond. 26(4), 1–4 (2016)CrossRefGoogle Scholar
  2. 2.
    Yang, Q., Le Blond, S., Liang, F., Yuan, W., Zhang, M., Li, J.: Design and application of superconducting fault current limiter in a multiterminal HVDC system. IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017)CrossRefGoogle Scholar
  3. 3.
    Yang, Y., Zhang, Y., Duan, B., Wang, D., Li, X.: A novel design project for space solar power station (SSPS-OMEGA). Acta Astronaut. 121, 51–58 (2016)CrossRefGoogle Scholar
  4. 4.
    Celentano, G., De Marzi, G., Fabbri, F., Muzzi, L., Tomassetti, G., Anemona, A., Della Corte, A.: Design of an industrially feasible twisted-stack HTS cable-in-conduit conductor for fusion application. IEEE Trans. Appl. Supercond. 24(3), 1–5 (2013)CrossRefGoogle Scholar
  5. 5.
    Fujishiro, H., Ainslie, M.D., Takahashi, K., Naito, T., Yanagi, Y., Itoh, Y., Nakamura, T.: Simulation studies of mechanical stresses in REBaCuO superconducting ring bulks with infinite and finite height reinforced by metal ring during field-cooled magnetization. Supercond. Sci. Technol. 30(8), 085008 (2017)CrossRefGoogle Scholar
  6. 6.
    Cook, R.F., Dinger, T.R., Clarke, D.R.: Fracture toughness measurements of YBa2Cu3Ox single crystals. Appl. Phys. Lett. 51(6), 454–456 (1987)CrossRefGoogle Scholar
  7. 7.
    Fujimoto, H.: Preparation and mechanical properties of large single domain GdBaCuO superconductor with low void density. IEEE Trans. Appl. Supercond. 19(3), 2933–2936 (2009)CrossRefGoogle Scholar
  8. 8.
    Li, L., Zhong, L., Duan, X., Song, M., Shi, Z., Hu, N., Lin, Y.: Study on heat transfer characteristics of stainless steel wrapped YBCO strip under liquid nitrogen. In: 2018 International Conference on Power System Technology (POWERCON). IEEE, pp. 4229–4234(2018)Google Scholar
  9. 9.
    Ma, G.T., Rauh, H.: Thermo-electromagnetic properties of a magnetically shielded superconductor strip: theoretical foundations and numerical simulations. Supercond. Sci. Technol. 26(10), 105001 (2013)CrossRefGoogle Scholar
  10. 10.
    Miyamoto, T., Nagashima, K., Sakai, N., Murakami, M.: Measurements of the thermal stresses in large-grain Y–Ba–Cu–O superconductors. Physica C Supercond. 349(1–2), 69–74 (2001)CrossRefGoogle Scholar
  11. 11.
    Gao, Z.W., Zhou, Y.H.: Fracture behaviors induced by thermal stress in an anisotropic half plane superconductor. Phys. Lett. A 372(32), 5261–5264 (2008)CrossRefGoogle Scholar
  12. 12.
    Zhao, Y., Liu, H., Xu, C.: Effect of thermal stress on crack growth in inhomogeneous cylindrical superconductor. J. Therm. Stress. 42, 254–264 (2019)CrossRefGoogle Scholar
  13. 13.
    Yang, Y., Chai, X.: Viscous flux flow velocity and stress distribution in the Kim model of a long rectangular slab superconductor. Supercond. Sci. Technol. 31(5), 055005 (2018)CrossRefGoogle Scholar
  14. 14.
    Yong, H., Zhou, Y.: Crack problem for thin superconducting strip in a perpendicular magnetic field. IEEE Trans. Appl. Supercond. 22(2), 8400905–8400905 (2012)CrossRefGoogle Scholar
  15. 15.
    Zhou, Y.H., Yong, H.D.: Crack problem for a long rectangular slab of superconductor under an electromagnetic force. Phys. Rev. B 76(9), 094523 (2007)CrossRefGoogle Scholar
  16. 16.
    Zeng, J., Zhou, Y.H., Yong, H.D.: Kim model for stress distribution in a hollow cylindrical superconductor. Physica C Supercond. 469(14), 822–826 (2009)CrossRefGoogle Scholar
  17. 17.
    Feng, W.J., Gao, S.W., Li, Y.S.: An inner annular crack in a superconducting cylinder and its crack front properties under applied magnetic field. Appl. Math. Model. 40(4), 2529–2540 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Miyazato, T., Hojo, M., Sugano, M., Adachi, T., Inoue, Y., Shikimachi, K., Nagaya, S.: Mode I type delamination fracture toughness of YBCO coated conductor with additional Cu layer. Physica C Supercond. Appl. 471(21–22), 1071–1074 (2011)CrossRefGoogle Scholar
  19. 19.
    Kesgin, I., Khatri, N., Liu, Y., Delgado, L., Galstyan, E., Selvamanickam, V.: Influence of superconductor film composition on adhesion strength of coated conductors. Supercond. Sci. Technol. 29(1), 015003 (2015)CrossRefGoogle Scholar
  20. 20.
    Wang, K.F., Wang, B.L.: A double cantilever beam model for fracture toughness analysis of superconductors. Physica C Supercond. Appl. 558, 38–43 (2019)CrossRefGoogle Scholar
  21. 21.
    Duan, Y., Ta, W., Gao, Y.: Numerical models of delamination behavior in 2G HTS tapes under transverse tension and peel. Physica C Supercond. Appl. 545, 26–37 (2018)CrossRefGoogle Scholar
  22. 22.
    Yong, H.D., Jing, Z., Zhou, Y.H.: Crack problem for superconducting strip with finite thickness. Int. J. Solids Struct. 51(3–4), 886–893 (2014)CrossRefGoogle Scholar
  23. 23.
    Yong, H., Zhou, Y.: Interface crack between superconducting film and substrate. J. Appl. Phys. 110(6), 063924 (2011)CrossRefGoogle Scholar
  24. 24.
    Feng, W.J., Yan, Z.: Fracture analysis on an arc-shaped interfacial crack between a superconducting cylinder and its functionally graded coating with transport currents. Compos. Struct. 185, 338–347 (2018)CrossRefGoogle Scholar
  25. 25.
    Liu, Q.F., Yan, Z., Feng, W.J.: Fracture behaviors for a functionally graded superconducting cylinder with a cylindrical crack. Mech. Adv. Mater. Struct. 24(2), 176–182 (2017)CrossRefGoogle Scholar
  26. 26.
    Anderson, P.W., Kim, Y.B.: Hard superconductivity: theory of the motion of Abrikosov flux lines. Rev. Modern Phys. 36(1), 39 (1964)CrossRefGoogle Scholar
  27. 27.
    Schönborg, N., Hörnfeldt, S.: Model of the temperature dependence of the hysteresis losses in a high-temperature superconductor. Physica C Supercond. 372, 1734–1738 (2002)CrossRefGoogle Scholar
  28. 28.
    Wang, Y.Q., Wang, B.L., Wang, K.F., Zheng, L.: Effect of temperature-dependent critical current density on the fracture behavior for a rectangular superconducting slab with a center crack. Physica C Supercond. Appl. 556, 36–42 (2019)CrossRefGoogle Scholar
  29. 29.
    Liu, L., Kardomateas, G.A.: Thermal stress intensity factors for a crack in an anisotropic half plane. Int. J. Solids Struct. 42(18–19), 5208–5223 (2005)CrossRefGoogle Scholar
  30. 30.
    Wang, B.L., Li, J.E.: Hyperbolic heat conduction and associated transient thermal fracture for a piezoelectric material layer. Int. J. Solids Struct. 50(9), 1415–1424 (2013)CrossRefGoogle Scholar
  31. 31.
    Kim, Y.B., Hempstead, C.F., Strnad, A.R.: Critical persistent currents in hard superconductors. Phys. Rev. Lett. 9(7), 306 (1962)CrossRefGoogle Scholar
  32. 32.
    Yong, H.D., Zhou, Y.H., Zeng, J.: Crack problem in a long cylindrical superconductor. J. Appl. Phys. 104, 448 (2008)Google Scholar
  33. 33.
    Ozisik, M.N., Tzou, D.Y.: On the wave theory in heat conduction. Heat Transf. Trans. ASME 116, 526–535 (1994)CrossRefGoogle Scholar
  34. 34.
    Berger, K., Lévêque, J., Netter, D., Douine, B., Rezzoug, A.: Influence of temperature and/or field dependences of the E-J power law on trapped magnetic field in bulk YBaCuO. IEEE Trans. Appl. Supercond. 17(2), 3028–3031 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ScienceHarbin Institute of TechnologyShenzhenPeople’s Republic of China
  2. 2.Centre for Infrastructure Engineering, School of Computing, Engineering and MathematicsWestern Sydney UniversityPenrithAustralia
  3. 3.School of Civil EngineeringQingdao University of TechnologyQingdaoPeople’s Republic of China

Personalised recommendations