Advertisement

Acta Mechanica

, Volume 230, Issue 12, pp 4273–4286 | Cite as

Experimental structural dynamic measurements of an artificial insect-sized wing biomimicking a crane fly forewing

  • J. E. Rubio
  • U. K. ChakravartyEmail author
Original Paper
  • 71 Downloads

Abstract

The exceptional flying characteristics of airborne insects motivate the design of biomimetic wing structures that could exhibit a similar structural dynamic behavior. For this purpose, this paper describes methods for manufacturing a biofidelic insect-sized wing using the photolithography technique and analyzing its structural dynamic response in terms of its modal characteristics. The geometry of a crane fly forewing (family Tipulidae) is acquired using a micro-computed tomography scanner. A computer-aided design (CAD) model is generated from the reconstructed scanned model of the insect wing, and a photomask of the venation network that accounts for the stiffness variation along the surface of the insect wing is designed from the CAD model. A composite material artificial insect-sized wing is manufactured by patterning the veins using photoresist SU-8 on a Kapton film for the assembling of the wing. Experiments are performed using a modal shaker and a digital image correlation system to determine the natural frequencies and the mode shapes of the artificial wing from the fast Fourier transform of the time-varying out-of-plane displacement response of the wing. The effect of ultraviolet exposure time to the vein pattern on the modal characteristics of the artificial wing is investigated as a part of a parametric study. The natural frequencies of the wing increase with exposure time. The vibration modes are dominated by a bending and torsional nonlinear deformation response. The experimental results are compared to those predicted by a finite element model of the artificial wing.

Notes

Acknowledgements

This work was supported by the Louisiana Board of Regents’ support fund, contract number LEQSF(2013-16)-RD-A-17. The authors would like to thank Dr. Paul Schilling for facilitating the micro-CT scanner and Mr. William Miller Jr. for his assistance in the scanning procedure. The authors would also like to extend their gratitude to Dr. Leszek Malkinski and the Advanced Materials Research Institute (AMRI) at the University of New Orleans for facilitating the cleanroom and Dr. Rahmatollah Eskandari for his collaboration during the photolithography process.

References

  1. 1.
    Wootton, R.J.: The mechanical design of insect wings. Sci. Am. 203, 114–120 (1990).  https://doi.org/10.1146/annurev.en.37.010192.000553 CrossRefGoogle Scholar
  2. 2.
    Sane, S.: The aerodynamics of insect flight. J. Exp. Biol. 206, 4191–4208 (2003).  https://doi.org/10.1242/jeb.00663 CrossRefGoogle Scholar
  3. 3.
    Ellington, C.P.: The aerodynamics of hovering insect flight. IV. Aerodynamic mechanisms. Philos. Trans. R. Soc. Lond. B Biol. Sci. 305, 79–113 (1984).  https://doi.org/10.1098/rstb.1984.0052 CrossRefGoogle Scholar
  4. 4.
    Miller, L.A., Peskin, C.S.: A computational fluid dynamics of ‘clap and fling’ in the smallest insects. J. Exp. Biol. 208, 195–212 (2004).  https://doi.org/10.1242/jeb.01376 CrossRefGoogle Scholar
  5. 5.
    Miller, L.A., Peskin, C.S.: Flexible clap and fling in tiny insect flight. J. Exp. Biol. 212, 3076–3090 (2009).  https://doi.org/10.1242/jeb.028662 CrossRefGoogle Scholar
  6. 6.
    Ellington, C.P., van den Berg, C., Willmont, A.P., Thomas, A.R.: Leading edge vortices in insect flight. Nature 348, 626–630 (1996).  https://doi.org/10.1038/384626a0 CrossRefGoogle Scholar
  7. 7.
    Birch, J.M., Dickson, W.B., Dickinson, M.H.: Force production and flow structure of the leading edge vortex of flapping wings at high and low Reynolds number. J. Exp. Biol. 207, 1063–1072 (2004).  https://doi.org/10.1242/jeb.00848 CrossRefGoogle Scholar
  8. 8.
    Harbig, R., Sheridan, J., Thompson, M.: Reynolds number and aspect ratio effects on the leading-edge vortex for rotating insect wing planforms. J. Fluid Mech. 717, 166–192 (2013).  https://doi.org/10.1017/jfm.2012.565 CrossRefzbMATHGoogle Scholar
  9. 9.
    Wang, Z.J.: Two dimensional mechanism for insect hovering. Phys. Rev. Lett. 85, 2216–2219 (2000).  https://doi.org/10.1103/PhysRevLett.85.2216 CrossRefGoogle Scholar
  10. 10.
    Ennos, A.R., Wootton, R.J.: Functional wing morphology and aerodynamics of Panorpa Germanica (Insecta Mecoptera). J. Exp. Biol. 143, 267–284 (1989)Google Scholar
  11. 11.
    Wootton, R.J.: Functional morphology of insect wings. Annu. Rev. Entomol. 37, 113–140 (1992).  https://doi.org/10.1146/annurev.en.37.010192.000553 CrossRefGoogle Scholar
  12. 12.
    Wootton, R.J.: Leading edge section and asymmetric twisting in the wings of flying butterflies (Insecta Papilionoidea). J. Exp. Biol. 40, 105–117 (1993)Google Scholar
  13. 13.
    Combes, S.A., Daniel, T.L.: Flexural stiffness in insect wings I. Scaling and the influence of wing venation. J. Exp. Biol. 206, 2979–2987 (2003).  https://doi.org/10.1242/jeb.00523 CrossRefGoogle Scholar
  14. 14.
    Combes, S.A., Daniel, T.L.: Flexural stiffness in insect wings II. Spatial distribution and dynamic bending. J. Exp. Biol. 206, 2989–2997 (2003).  https://doi.org/10.1242/jeb.00524 CrossRefGoogle Scholar
  15. 15.
    Zhao, L., Huang, Q., Deng, X., Sane, S.: Aerodynamic effects of flexibility in flapping wings. J. R. Soc. Interface 7, 485–497 (2010).  https://doi.org/10.1098/rsif.2009.0200 CrossRefGoogle Scholar
  16. 16.
    Mountcastle, A.M., Combes, S.A.: Wing flexibility enhances load-lifting capacity in bumblebees. Proc. R. Soc. B Biol. Sci. 280, 1–8 (2013).  https://doi.org/10.1098/rspb.2013.0531/ CrossRefGoogle Scholar
  17. 17.
    Kang, C.K., Shyy, W.: Scaling law and enhancement of lift generation of an insect-size hovering flexible wing. J. R. Soc. Interface 10, 1–11 (2013).  https://doi.org/10.1098/rsif.2013.0361 CrossRefGoogle Scholar
  18. 18.
    Xiao, Q., Hu, J., Liu, H.: Effect of torsional stiffness and inertia on the dynamics of low aspect ratio flapping wings. Bioinspir. Biomim. 9, 1–15 (2014).  https://doi.org/10.1088/1748-3182/9/1/016008 CrossRefGoogle Scholar
  19. 19.
    Tanaka, H., Matsumoto, K., Shimoyama, I.: Fabrication of a three-dimensional insect-wing model by micromolding of thermosetting resin with a thin elastomeric mold. J. Micromech. Microeng. 17, 2485–2490 (2007).  https://doi.org/10.1088/0960-1317/17/12/014 CrossRefGoogle Scholar
  20. 20.
    Tanaka, H., Wood, R.J.: Fabrication of corrugated artificial insect wings using laser micromachined molds. J. Micromech. Microeng. 20, 1–8 (2010).  https://doi.org/10.1088/0960-1317/20/7/075008 CrossRefGoogle Scholar
  21. 21.
    Shang, J.K., Combes, S.A., Finio, B.M., Wood, R.J.: Artificial insect wings of diverse morphology for flapping-wing micro air vehicles. Bioinspir. Biomim. 4, 1–6 (2009).  https://doi.org/10.1088/1748-3182/4/3/036002 CrossRefGoogle Scholar
  22. 22.
    Xie. L., Wu, P., Ifju, P.G.: Advanced flapping wing structure fabrication for biologically inspired hovering flight. In: Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper No. 2010-2789; Orlando, FL 32819, USA, April 12–15 (2010).  https://doi.org/10.2514/6.2010-278
  23. 23.
    Bao, X., Bontemps, A., Grondel, S., Cattan, E.: Design and fabrication of insect-inspired composite wings for MAV application using MEMS technology. J. Micromech. Microeng. 21, 1–16 (2011).  https://doi.org/10.1088/0960-1317/21/12/125020 CrossRefGoogle Scholar
  24. 24.
    Wu, P., Stanford, B.K., Sallstrom, E., Ukeiley, L., Ifju, P.G.: Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings. Bioinspir. Biomim. 6, 1–20 (2011).  https://doi.org/10.1088/1748-3182/6/1/016009 CrossRefGoogle Scholar
  25. 25.
    Coe, R., Freeman, P., Mattingly, P.: Handbooks for the identification of British insects. Diptera 2. Nematocera: families Tipulidae to Chironomidae. R. Entomol. Soc. Lond. 9, 1–216 (1950)Google Scholar
  26. 26.
    Ellington, C.P.: The aerodynamics of hovering insect flight. II. Morphological parameters. Philos. Trans. R. Soc. Lond. B Biol. Sci. 305, 17–40 (1984).  https://doi.org/10.1098/rstb.1984.0050 CrossRefGoogle Scholar
  27. 27.
    Rubio, J.E., Schilling, P.J., Chakravarty, U.K.: Modal characterization and structural aerodynamic response of a crane fly forewing. Acta Mech. 229, 2307–2325 (2018).  https://doi.org/10.1007/s00707-018-2117-3 CrossRefGoogle Scholar
  28. 28.
    Microphotonics, Allentown, Pennsylvania, USAGoogle Scholar
  29. 29.
    DuPont, Wilmington, Delaware, USAGoogle Scholar
  30. 30.
    MicroChem, Westborough, Massachusetts, USAGoogle Scholar
  31. 31.
    Lorenz, H., Despont, M., Fahrni, N., LaBianca, N., Renaud, P., Vettiger, P.: SU-8: a low-cost negative resist for MEMS. J. Micromech. Microeng. 7, 121–124 (1997).  https://doi.org/10.1088/0960-1317/7/3/010 CrossRefGoogle Scholar
  32. 32.
    Rubio, J.E., Chakravarty, U.K.: An investigation of the aerodynamic performance of a biomimetic insect-sized wing for micro air vehicles. In: Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition (IMECE 2016), Paper No. 2016-65303; November 11–17, 2016: Phoenix, AR 85004, USAGoogle Scholar
  33. 33.
    AutoCAD.: Version 2013, Autodesk, Inc., San Rafael, California, USA (2012)Google Scholar
  34. 34.
    Sims, T., Palazotto, A., Norris, A.: A structural dynamic analysis of a Manduca Sexta forewing. Int. J. Micro Air Veh. 2, 119–140 (2010).  https://doi.org/10.1260/1756-8293.2.3.119 CrossRefGoogle Scholar
  35. 35.
    CAD/ART Services Inc., Bandon, Oregon, USAGoogle Scholar
  36. 36.
    Brewer Science Inc., Rolla, Missouri, USAGoogle Scholar
  37. 37.
    Martinez-Duarte, R., Madou, M.: SU-8 Photolithography and its impact on microfluidics. In: Mitra, K., Chakraborthy, S. (eds.) Microfluidics and Nanofluidics Handbook: Fabrication, Implementation and Applications, pp. 231–268. CRC Press, Boca Raton (2010)Google Scholar
  38. 38.
    Newport Corporation, Irvine, California, USAGoogle Scholar
  39. 39.
    Data Physics Corporation, San Jose, California, USAGoogle Scholar
  40. 40.
    Dytran Instruments INC., Chatsworth, California, USAGoogle Scholar
  41. 41.
    Photron, San Diego, California, USAGoogle Scholar
  42. 42.
    Correlated Solutions, Inc., Irmo, South Carolina, USAGoogle Scholar
  43. 43.
    VIC-Snap.: Version 7.8, Correlated Solutions, Inc., Irmo, South Carolina, USA (2014)Google Scholar
  44. 44.
    VIC-3D.: Version 7.2.4, Correlated Solutions, Inc., Irmo, South Carolina, USA (2014)Google Scholar
  45. 45.
    Bracewell, R.N.: The Fourier Transform and Its Applications, 1st edn. McGraw-Hill, New York (1986)zbMATHGoogle Scholar
  46. 46.
    MATLAB.: Version 2016b, The MathWorks, Inc., Natick, Massachusetts, USA (2015)Google Scholar
  47. 47.
    Sutton, M.A., Orteu, J.J., Hubert, H.W.: Image Correlation for Shape, Motion, and Deformation Measurements, 1st edn. Springer, New York (2009)Google Scholar
  48. 48.
    Schneider Kreuznach, Rhineland-Palatinate, GermanyGoogle Scholar
  49. 49.
    VIC 3-D Testing Guide.: Version 7, Correlated Solutions, Inc., Irmo, South Carolina, USA (2014)Google Scholar
  50. 50.
    Chen, J.S., Chen, J.Y., Chou, Y.F.: On the natural frequencies and mode shapes of dragonfly wings. J. Sound Vib. 313, 643–654 (2008).  https://doi.org/10.1016/j.jsv.2007.11.056 CrossRefGoogle Scholar
  51. 51.
    Ganguli, R., Gorb, S., Lehmann, F., Mukherjee, S., Mukherjee, S.: An experimental and numerical study of Calliphora wing structure. Exp. Mech. 50, 1183–1197 (2010).  https://doi.org/10.1007/s11340-009-9316-8 CrossRefGoogle Scholar
  52. 52.
    Jongerius, S.R., Lentink, D.: Structural analysis of a dragonfly wing. Exp. Mech. 50, 1323–1334 (2010).  https://doi.org/10.1007/s11340-010-9411-x CrossRefGoogle Scholar
  53. 53.
    Norris, A.G., Palazotto, A.N., Cobb, R.G.: Experimental structural dynamic characterization of the hawkmoth (Manduca sexta) forewing. Int. J. Micro Air Veh. 5, 39–54 (2013).  https://doi.org/10.1260/1756-8293.5.1.39 CrossRefGoogle Scholar
  54. 54.
    Inman, D.J.: Engineering Vibration, 3rd edn. Pearson Education Inc., Upper Saddle River (2007)zbMATHGoogle Scholar
  55. 55.
    Abaqus: Version 6.12, Dassault Systemes, Providence, Rhode Island, USA (2011)Google Scholar
  56. 56.
    Dellmann, L., Roth, S., Beuret, C., Racine, G., Lorenz, H., Despont, M., Renaud, P., Vettiger, P., Rooij, N.: Fabrication process of high aspect ratio elastic and SU-8 structures for piezoelectric motor applications. Sens. Actuator A 70, 42–47 (1998).  https://doi.org/10.1016/s0924-4247(98)00110-1 CrossRefGoogle Scholar
  57. 57.
    Feng, R., Farris, J.: Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings. J. Micromech. Microeng. 13, 80–88 (2003).  https://doi.org/10.1088/0960-1317/13/1/312 CrossRefGoogle Scholar
  58. 58.
    Hammacher, J., Fuelle, A., Flaemig, J., Saupe, J., Loechel, B., Grimm, J.: Stress engineering and mechanical properties of SU-8-layers for mechanical applications. Microsyst. Technol. 14, 1515–1523 (2008).  https://doi.org/10.1007/s00542-007-0534-7 CrossRefGoogle Scholar
  59. 59.
    Hopcroft, M., Kramer, T., Kim, G., Takashima, K., Higo, Y., Moore, D., Brugger, J.: Micromechanical testing of SU-8 cantilevers. Fatigue Fract. Eng. Mater. Struct. 28, 735–742 (2005).  https://doi.org/10.1111/j.1460-2695.2005.00873.x CrossRefGoogle Scholar
  60. 60.
    Lorenz, H., Laudon, M., Renaud, P.: Mechanical characterization of a new high-aspect-ratio near UV-photoresist. Microelectron. Eng. 41(42), 371–374 (1998).  https://doi.org/10.1016/s0167-9317(98)00086-0 CrossRefGoogle Scholar
  61. 61.
    Savitxky, A., Golay, M.J.: Smoothing and differentiation of data by simplified least square procedures. Anal. Chem. 36, 1627–1639 (1964).  https://doi.org/10.1021/ac60214a047 CrossRefGoogle Scholar
  62. 62.
    Leissa, A.: The free vibration of rectangular plates. J. Sound Vib. 31, 257–293 (1973).  https://doi.org/10.1016/s0022-460x(73)80371-2 CrossRefzbMATHGoogle Scholar
  63. 63.
    Smith, C.W., Hebert, R., Wootton, R.J., Evans, K.E.: The hind wing of the desert locus (Schistocerca gregaria Forskal) II. Mechanical properties and functioning of the membrane. J. Exp. Biol. 203, 2933–2943 (2000)Google Scholar
  64. 64.
    Agrawal, A., Agrawal, S.: Design of bio-inspired flexible wings for flapping-wing micro-sized air vehicle applications. Adv. Robot. 23, 979–1002 (2009).  https://doi.org/10.1163/156855309X443133 CrossRefGoogle Scholar
  65. 65.
    Dargent, T., Bao, X., Grondel, S., LeBrun, G., Paquet, J., Soyer, C., Cattan, E.: Micromachining of an SU-8 flapping-wing flying micro-electro-mechanical system. J. Micromech. Microeng. 19, 085028 (2009).  https://doi.org/10.1088/0960-1317/19/8/085028 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of New OrleansNew OrleansUSA

Personalised recommendations