Advertisement

Acta Mechanica

, Volume 230, Issue 12, pp 4213–4233 | Cite as

Extended JKR theory on adhesive contact of coated spheres

  • Vinh Phu Nguyen
  • Seung Tae ChoiEmail author
Original Paper
  • 116 Downloads

Abstract

Thin films, coatings, and layered structures are ubiquitous in contemporary micro- and nanoelectronics, optoelectronics, and electromechanical systems, for which adhesion between heterogeneous materials is one of the important mechanical properties to be considered in fabrication and operation. In this study, the adhesive contact between elastic layered spheres, which includes a thin film on a flat substrate as a special case, is analyzed on the basis of the conventional Johnson–Kendall–Roberts (JKR) theory on adhesive contact between elastic spheres. Firstly, the force–depth relations of axisymmetric flat and spherical indentations on an elastic film perfectly bonded to an elastic half-space are obtained in compact forms, depending on two Dundurs parameters and the ratio of the contact radius to the thickness of the film. The solution of a spherical indentation on a layered half-space is then superposed, following a Hertz analysis, to obtain the adhesionless Hertzian contact between the elastic films coated on the elastic spheres. Similarly, the solution to the adhesive JKR contact state between elastic films coated on elastic spheres is also obtained by properly superposing the linear elastic solutions of the flat and spherical indentations on a layered half-space. The obtained Hertzian and adhesive JKR contact states should be regarded as approximate solutions, since the pressure distribution in the contact region does not exactly satisfy Newton’s third law. The JKR state equations among the normalized applied force, normalized penetration depth, and normalized contact radius are obtained in compact forms, in which non-dimensional multiplying factors depending on the geometric parameters and two sets of non-dimensional Dundurs parameters account for the effect of the elastic layers. Finally, the pull-off force at the moment of debonding of the two elastic films coated on the elastic spheres is calculated and compared with the conventional JKR result.

Notes

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (No. NRF-2017R1A2B4012081) and the Nano-Material Technology Development Program by NRF, funded by the Korea government (Ministry of Science and ICT) (No. NRF-2016M3A7B4910531).

References

  1. 1.
    Hertz, H.: Ueber die Berührung fester elastischer Körper. Journal fur die Reine und Angewandte Mathematik 92, 156–171 (1882)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Maboudian, R.: Surface processes in MEMS technology. Surf. Sci. Rep. 30(6), 207–269 (1998).  https://doi.org/10.1016/S0167-5729(97)00014-9 CrossRefGoogle Scholar
  3. 3.
    Zhao, Y.P., Wang, L.S., Yu, T.X.: Mechanics of adhesion in MEMS—a review. J. Adhes. Sci. Technol. 17(4), 519–546 (2003).  https://doi.org/10.1163/15685610360554393 CrossRefGoogle Scholar
  4. 4.
    Kim, K.-S., Kim, J.-H., Lee, H.-J., Lee, S.-R.: Tribology issues in nanoimprint lithography. J. Mech. Sci. Technol. 24(1), 5–12 (2010).  https://doi.org/10.1007/s12206-009-1216-4 CrossRefGoogle Scholar
  5. 5.
    Johnson, K.L., Kendall, K., Roberts, A.D., Tabor, D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 324(1558), 301–313 (1971).  https://doi.org/10.1098/rspa.1971.0141 CrossRefGoogle Scholar
  6. 6.
    Derjaguin, B.V., Muller, V.M., Toporov, Y.P.: Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53(2), 314–326 (1975).  https://doi.org/10.1016/0021-9797(75)90018-1 CrossRefGoogle Scholar
  7. 7.
    Tabor, D.: Surface forces and surface interactions. J. Colloid Interface Sci. 58(1), 2–13 (1977).  https://doi.org/10.1016/0021-9797(77)90366-6 CrossRefGoogle Scholar
  8. 8.
    Maugis, D.: Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci. 150(1), 243–269 (1992).  https://doi.org/10.1016/0021-9797(92)90285-T CrossRefGoogle Scholar
  9. 9.
    Johnson, K.L., Greenwood, J.A.: An adhesion map for the contact of elastic spheres. J. Colloid Interface Sci. 192(2), 326–333 (1997).  https://doi.org/10.1006/jcis.1997.4984 CrossRefGoogle Scholar
  10. 10.
    Maugis, D.: Contact, Adhesion and Rupture of Elastic Solids. Springer Series in Solid-State Sciences, New York (2000)CrossRefGoogle Scholar
  11. 11.
    Barthel, E.: Adhesive elastic contacts: JKR and more. J. Phys. D Appl. Phys. 41(16), 163001 (2008).  https://doi.org/10.1088/0022-3727/41/16/163001 CrossRefGoogle Scholar
  12. 12.
    Sridhar, I., Johnson, K.L., Fleck, N.A.: Adhesion mechanics of the surface force apparatus. J. Phys. D Appl. Phys. 30(12), 1710–1719 (1997).  https://doi.org/10.1088/0022-3727/30/12/004 CrossRefGoogle Scholar
  13. 13.
    Johnson, K.L., Sridhar, I.: Adhesion between a spherical indenter and an elastic solid with a compliant elastic coating. J. Phys. D Appl. Phys. 34(5), 683–689 (2001).  https://doi.org/10.1088/0022-3727/34/5/304 CrossRefGoogle Scholar
  14. 14.
    Sridhar, I., Zheng, Z.W., Johnson, K.L.: A detailed analysis of adhesion mechanics between a compliant elastic coating and a spherical probe. J. Phys. D Appl. Phys. 37(20), 2886–2895 (2004).  https://doi.org/10.1088/0022-3727/37/20/016 CrossRefGoogle Scholar
  15. 15.
    Mary, P., Chateauminois, A., Fretigny, C.: Deformation of elastic coatings in adhesive contacts with spherical probes. J. Phys. D Appl. Phys. 39(16), 3665–3673 (2006).  https://doi.org/10.1088/0022-3727/39/16/021 CrossRefGoogle Scholar
  16. 16.
    Barthel, E., Perriot, A.: Adhesive contact to a coated elastic substrate. J. Phys. D Appl. Phys. 40(4), 1059–1067 (2007).  https://doi.org/10.1088/0022-3727/40/4/021 CrossRefGoogle Scholar
  17. 17.
    Lebedev, N.N., Ufliand, I.S.: Axisymmetric contact problem for an elastic layer. J. Appl. Math. Mech. 22(3), 442–450 (1958).  https://doi.org/10.1016/0021-8928(58)90059-5 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Dhaliwal, R.S.: Punch problem for an elastic layer overlying an elastic foundation. Int. J. Eng. Sci. 8(4), 273–288 (1970).  https://doi.org/10.1016/0020-7225(70)90058-3 CrossRefzbMATHGoogle Scholar
  19. 19.
    Hayes, W.C., Keer, L.M., Herrmann, G., Mockros, L.F.: A mathematical analysis for indentation tests of articular cartilage. J. Biomech. 5(5), 541–551 (1972).  https://doi.org/10.1016/0021-9290(72)90010-3 CrossRefGoogle Scholar
  20. 20.
    King, R.B.: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23(12), 1657–1664 (1987).  https://doi.org/10.1016/0020-7683(87)90116-8 CrossRefzbMATHGoogle Scholar
  21. 21.
    Yu, H.Y., Sanday, S.C., Rath, B.B.: The effect of substrate on the elastic properties of films determined by the indentation test—axisymmetric Boussinesq problem. J. Mech. Phys. Solids 38(6), 745–764 (1990).  https://doi.org/10.1016/0022-5096(90)90038-6 CrossRefGoogle Scholar
  22. 22.
    Yang, F.: Indentation of an incompressible elastic film. Mech. Mater. 30(4), 275–286 (1998).  https://doi.org/10.1016/S0167-6636(98)00035-0 CrossRefGoogle Scholar
  23. 23.
    Yang, F.: Thickness effect on the indentation of an elastic layer. Mater. Sci. Eng. A 358(1), 226–232 (2003).  https://doi.org/10.1016/S0921-5093(03)00289-2 CrossRefGoogle Scholar
  24. 24.
    Sergici, A.O., Adams, G.G., Müftü, S.: Adhesion in the contact of a spherical indenter with a layered elastic half-space. J. Mech. Phys. Solids 54(9), 1843–1861 (2006).  https://doi.org/10.1016/j.jmps.2006.03.005 CrossRefzbMATHGoogle Scholar
  25. 25.
    Constantinescu, A., Korsunsky, A.M., Pison, O., Oueslati, A.: Symbolic and numerical solution of the axisymmetric indentation problem for a multilayered elastic coating. Int. J. Solids Struct. 50(18), 2798–2807 (2013).  https://doi.org/10.1016/j.ijsolstr.2013.04.017 CrossRefGoogle Scholar
  26. 26.
    Stan, G., Adams, G.G.: Adhesive contact between a rigid spherical indenter and an elastic multi-layer coated substrate. Int. J. Solids Struct. 87, 1–10 (2016).  https://doi.org/10.1016/j.ijsolstr.2016.02.043 CrossRefGoogle Scholar
  27. 27.
    Argatov, I.I., Borodich, F.M., Popov, V.L.: JKR adhesive contact for a transversely isotropic layer of finite thickness. J. Phys. D Appl. Phys. 49(4), 045307 (2015).  https://doi.org/10.1088/0022-3727/49/4/045307 CrossRefGoogle Scholar
  28. 28.
    Choi, S.T.: Extended JKR theory on adhesive contact of a spherical tip onto a film on a substrate. J. Mater. Res. 27(1), 113–120 (2012).  https://doi.org/10.1557/jmr.2011.324 CrossRefGoogle Scholar
  29. 29.
    Sohn, D., Won, H.-S., Jang, B., Kim, J.-H., Lee, H.-J., Choi, S.T.: Extended JKR theory on adhesive contact between elastic coatings on rigid cylinders under plane strain. Int. J. Solids Struct. 71, 244–254 (2015).  https://doi.org/10.1016/j.ijsolstr.2015.06.026 CrossRefGoogle Scholar
  30. 30.
    Dundurs, J.: Elastic interaction of dislocations with inhomogeneities. In: Mura, T. (ed.) Mathematical Theory of Dislocations, pp. 70–115. ASME, New York (1969)Google Scholar
  31. 31.
    Gladwell, G.M.L.: Contact Problems in the Classical Theory of Elasticity. Sijthoff & Noordhoff International Publishers, Netherlands (1980)CrossRefGoogle Scholar
  32. 32.
    Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3(1), 47–57 (1965).  https://doi.org/10.1016/0020-7225(65)90019-4 MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Maugis, D., Barquins, M.: Fracture mechanics and the adherence of viscoelastic bodies. J. Phys. D Appl. Phys. 11(14), 1989–2023 (1978).  https://doi.org/10.1088/0022-3727/11/14/011 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringChung-Ang UniversitySeoulRepublic of Korea

Personalised recommendations