Advertisement

Acta Mechanica

, Volume 230, Issue 10, pp 3645–3666 | Cite as

Magneto-electro-elastic node-based smoothed point interpolation method for micromechanical analysis of natural frequencies of nanobeams

  • Liming Zhou
  • Shuhui Ren
  • Bin Nie
  • Hongrong Yang
  • Peng LiuEmail author
Original Paper
  • 61 Downloads

Abstract

As an addition to the traditional finite element method (FEM), the magneto-electro-elastic node-based smoothed point interpolation method (MEE-NS-PIM) with asymptotic homogenization method (AHM) is presented to solve the micromechanical problems of MEE nanobeams, which overcomes the deficiency of FEM and improves the accuracy of the calculation results. Firstly, the basic equations of MEE medium are derived. Secondly, AHM is adopted to calculate the property parameters of MEE materials under microcosmic situations, and the AHM model is illustrated. Then, the relative formulations of the discretized system used to calculate the frequency of MEE nanostructures are deduced based on MEE-NS-PIM. Moreover, several numerical examples are calculated, and the results of MEE-NS-PIM are compared with those of FEM, which proves the convergence, precision, and effectiveness of MEE-NS-PIM. Therefore, MEE-NS-PIM combined with AHM can be used to analyze the microcosmic MEE coupling problems and obtain a more accurate and reliable solution for MEE micromechanics.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant Number 11502092]; Jilin Provincial Science Foundation for Youths [Grant Number 20160520064JH]; Supported by Graduate Innovation Fund of Jilin University [Grant Number 101832018C184]; Foundation Sciences Jilin Provincial [Grant Number 20170101043JC]; Educational Commission of Jilin Province of China [Grant Numbers JJKH20180084KJ and JJKH20190131KJ].

Author contributions LZ and PL contributed to the research concept and design. SR, BN and HY contributed to the writing of the article and collection of data. PL contributed to the research concept, design, and data analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. 1.
    Li, Q.H., Chen, W.J., Liu, S.T., Wang, J.X.: A novel implementation of asymptotic homogenization for viscoelastic composites with periodic microstructures. Compos. Struct. 208, 276–286 (2019)Google Scholar
  2. 2.
    Tahani, M., Safarian, S.: Determination of rigidities, stiffness coefficients and elastic constants of multi-layer graphene sheets by an asymptotic homogenization method. J. Braz. Soc. Mech. Sci. Eng. 41(1), 3 (2019)Google Scholar
  3. 3.
    Jeong, S., Zhu, F., Lim, H., Kim, Y., Yun, G.J.: 3D stochastic computational homogenization model for carbon fiber reinforced CNT/epoxy composites with spatially random properties. Compos. Struct. 207, 858–870 (2019)Google Scholar
  4. 4.
    Shi, J., Akbarzadeh, A.H.: Architected cellular piezoelectric metamaterials: thermo-electro-mechanical properties. Acta Mater. 163, 91–121 (2019)Google Scholar
  5. 5.
    Shabana, Y.M., Wang, G.T.: Thermomechanical modeling of polymer nanocomposites by the asymptotic homogenization method. Acta Mech. 224(6), 1213–1224 (2013)zbMATHGoogle Scholar
  6. 6.
    Cioranescu, D., Donato, P.: An Introduction to Homogenization. Oxford University Press, Oxford (1999)zbMATHGoogle Scholar
  7. 7.
    Miehe, C., Vallicotti, D., Teichtmeister, S.: Homogenization and multiscale stability analysis in finite magneto-electro-elasticity, Application to soft matter EE, ME and MEE composites. Comput. Method Appl. Mech. Eng. 300, 294–346 (2016)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Berger, H., Gabbert, U., Koppe, H., Rodriguez-Ramos, R., Bravo-Castillero, J., Guinovart-Diaz, R., Otero, J.A., Maugin, G.A.: Finite element and asymptotic homogenization methods applied to smart composite materials. Comput. Mech. 33(1), 61–67 (2003)zbMATHGoogle Scholar
  9. 9.
    Bravo-Castillero, J., Rodriguez-Ramos, R., Mechkour, H., Otero, J.A., Sabina, F.J.: Homogenization of magneto-electro-elastic multilaminated materials. Q. J. Mech. Appl. Mech. 61, 311–332 (2008)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Challagulla, K.S., Georgiades, A.V.: Micromechanical analysis of magneto-electro-thermo-elastic composite materials with applications to multilayered structures. Int. J. Eng. Sci. 49(1), 85–104 (2011)Google Scholar
  11. 11.
    Tsai, Y.H., Wu, C.P.: Dynamic responses of functionally graded magneto-electro-elastic shells with open-circuit surface conditions. Int. J. Eng. Sci. 46(9), 843–857 (2008)zbMATHGoogle Scholar
  12. 12.
    Li, E., Zhang, Z.P., Chang, C.C., Liu, G.R., Li, Q.: Numerical homogenization for incompressible materials using selective smoothed finite element method. Compos. Struct. 123, 216–232 (2015)Google Scholar
  13. 13.
    Li, E., Zhang, Z.P., Chang, C.C., Zhou, S.W., Liu, G.R., Li, Q.: A new homogenization formulation for multifunctional composites. Int. J. Comput. Methods 13(2), 1640002 (2016)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Ebrahimi, F., Barati, M.R.: Porosity-dependent vibration analysis of piezo-magnetically actuated heterogeneous nanobeams. Mech. Syst. Signal Process. 93, 445–459 (2017)Google Scholar
  15. 15.
    Farajpour, A., Yazdi, M.R.H., Rastgoo, A., Loghmani, M., Mohammadi, M.: Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates. Compos. Struct. 140, 323–336 (2016)Google Scholar
  16. 16.
    Razavi, S., Shooshtari, A.: Nonlinear free vibration of magneto-electro-elastic rectangular plates. Compos. Struct. 119, 377–384 (2015)Google Scholar
  17. 17.
    Ke, L.L., Wang, Y.S., Yang, J., Kitipornchai, S.: Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory. Acta. Mech. Sin. 30(4), 516–525 (2014)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Kattimani, S.C., Ray, M.C.: Smart damping of geometrically nonlinear vibrations of magneto-electro-elastic plates. Compos. Struct. 114, 51–63 (2014)Google Scholar
  19. 19.
    Kattimani, S.C., Ray, M.C.: Control of geometrically nonlinear vibrations of functionally graded magneto-electro-elastic plates. Int. J. Mech. Sci. 99, 154–167 (2015)Google Scholar
  20. 20.
    Sladek, J., Sladek, V., Solek, P., Pan, E.: Fracture analysis of cracks in magneto-electro-elastic solids by the MLPG. Comput. Mech. 42(5), 697–714 (2008).  https://doi.org/10.1007/s00466-008-0269-z CrossRefzbMATHGoogle Scholar
  21. 21.
    Ebrahimi, F., Barati, M.R.: Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory. Smart Mater. Struct. 25(10), 105014 (2016)Google Scholar
  22. 22.
    Ebrahimi, F., Barati, M.R.: An exact solution for buckling analysis of embedded piezoelectro-magnetically actuated nanoscale beams. Adv. Nano Res. 4(2), 65–84 (2016)Google Scholar
  23. 23.
    Xin, L.B., Hu, Z.D.: Free vibration of simply supported and multilayered magneto-electro-elastic plates. Compos. Struct. 121, 344–350 (2015)Google Scholar
  24. 24.
    Liu, L.P.: An energy formulation of continuum magneto-electro-elasticity with applications. J. Mech. Phys. Solids 63, 451–480 (2014)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Li, X.Y., Ding, H.J., Chen, W.Q.: Three-dimensional analytical solution for functionally graded magneto-electro-elastic circular plates subjected to uniform load. Compos. Struct. 83(4), 381–390 (2008)Google Scholar
  26. 26.
    Milazzo, A., Orlando, C., Alaimo, A.: An analytical solution for the magneto-electro-elastic bimorph beam forced vibrations problem. Smart Mater. Struct. 18(8), 085012 (2009)Google Scholar
  27. 27.
    Wu, C.P., Lu, Y.C.: A modified Pagano method for the 3D dynamic responses of functionally graded magneto-electro-elastic plates. Compos. Struct. 90(3), 363–372 (2009)Google Scholar
  28. 28.
    Wu, C.P., Chen, S.J., Chiu, K.H.: Three-dimensional static behavior of functionally graded magneto-electro-elastic plates using the modified Pagano method. Mech. Res. Commun. 37(1), 54–60 (2010)zbMATHGoogle Scholar
  29. 29.
    Chen, W.Q., Pan, E.N., Wang, H.M., Zhang, C.Z.: Theory of indentation on multiferroic composite materials. J. Mech. Phys. Solids 58(10), 1524–1551 (2010)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Liu, J., Zhang, P.C., Lin, G., Wang, W.Y., Lu, S.: Solutions for the magneto-electro-elastic plate using the scaled boundary finite element method. Eng. Anal. Bound. Elem. 68, 103–114 (2016)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Vinyas, M., Kattimani, S.C.: A finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading. Struct. Eng. Mech. 62(5), 519–535 (2017)Google Scholar
  32. 32.
    Alaimo, A., Milazzo, A., Orlando, C.: A four-node MITC finite element for magneto-electro-elastic multilayered plates. Comput. Struct. 129, 120–133 (2013)Google Scholar
  33. 33.
    Alaimo, A., Benedetti, L., Milazzo, A.: A finite element formulation for large deflection of multilayered magneto-electro-elastic plates. Compos. Struct. 107, 643–653 (2014)Google Scholar
  34. 34.
    Moita, J.M.S., Soares, C.M.M., Soares, C.A.M.: Analyses of magneto-electro-elastic plates using a higher order finite element model. Compos. Struct. 91(4), 421–426 (2009)Google Scholar
  35. 35.
    Atul Daga, N.G., Shankar, K.: Studies on magnetoelectric effect for magneto-electro-elastic cylinder using finite element method. Multidiscip. Model. Mater. Struct. 5(3), 307–310 (2009)Google Scholar
  36. 36.
    Buroni, F.C., Saez, A.: Three-dimensional Green’s function and its derivative for materials with general anisotropic magneto-electro-elastic coupling. Proc. R. Soc. Math. Phys. Eng. Sci. 466(2114), 515–537 (2010)zbMATHGoogle Scholar
  37. 37.
    Milazzo, A.: A one-dimensional model for dynamic analysis of generally layered magneto-electro-elastic beams. J. Sound Vib. 332(2), 465–483 (2013)Google Scholar
  38. 38.
    Milazzo, A.: Refined equivalent single layer formulations and finite elements for smart laminates free vibrations. Compos. Part B Eng. 61, 238–253 (2014)Google Scholar
  39. 39.
    Loja, M.A.R., Soares, C.M.M., Barbosa, J.I.: Optimization of magneto-electro-elastic composite structures using differential evolution. Compos. Struct. 107, 276–287 (2014)Google Scholar
  40. 40.
    Zhou, L.M., Ren, S.H., Liu, C.Y., Ma, Z.C.: A valid inhomogeneous cell-based smoothed finite element model for the transient characteristics of functionally graded magneto-electro-elastic structures. Compos. Struct. 208, 298–313 (2019)Google Scholar
  41. 41.
    Zhou, L.M., Li, M., Meng, G.W., Zhao, H.W.: An effective cell-based smoothed finite element model for the transient responses of magneto-electro-elastic structures. J. Intell Mater. Syst. Struct. 29(14), 3006–3022 (2018)Google Scholar
  42. 42.
    Zhou, L., Li, M., Ma, Z., Ren, S., Li, X., Tang, J., Ma, Z.: Steady-state characteristics of the coupled magneto-electro-thermo-elastic multi-physical system based on cell-based smoothed finite element method. Compos. Struct. 219(1), 111–128 (2019)Google Scholar
  43. 43.
    He, Z.C., Zhang, G.Y., Deng, L., Li, E., Liu, G.R.: Topology optimization using node-based smoothed finite element method. Int. J. Appl. Mech. 7(6), 1550085 (2015)Google Scholar
  44. 44.
    He, Z.C., Li, G.Y., Zhong, Z.H., Cheng, A.G., Zhang, G.Y., Li, E., Liu, G.R.: An ES-FEM for accurate analysis of 3D mid-frequency acoustics using tetrahedron mesh. Comput. Struct. 106, 125–134 (2012)Google Scholar
  45. 45.
    He, Z.C., Li, G.Y., Zhong, Z.H., Cheng, A.G., Zhang, G.Y., Liu, G.R., Li, E., Zhou, Z.: An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for 3D static and dynamic problems. Comput. Mech. 52(1), 221–236 (2013)MathSciNetzbMATHGoogle Scholar
  46. 46.
    He, Z.C., Li, G.Y., Liu, G.R., Cheng, A.G., Li, E.: Numerical investigation of ES-FEM with various mass re-distribution for acoustic problems. Appl. Acoust. 89, 222–233 (2015)Google Scholar
  47. 47.
    He, Z.C., Li, E., Li, G.Y., Wu, F., Liu, G.R., Nie, X.: Acoustic simulation using alpha-FEM with a general approach for reducing dispersion error. Eng. Anal. Bound. Elem. 61, 241–253 (2015)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Jiang, Y., Li, E.: XFEM with smoothing technique for static fracture mechanics in three-dimension. Int. J. Comput. Methods 13(2), 164004 (2016)MathSciNetGoogle Scholar
  49. 49.
    Li, E., He, Z.C., Xu, X., Liu, G.R., Gu, Y.T.: A three-dimensional hybrid smoothed finite element method (H-SFEM) for nonlinear solid mechanics problems. Acta Mech. 226(12), 4223–4245 (2015)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Zhang, G.Y., Li, Y., Gao, X.X., Hui, D., Wang, S.Q., Zong, Z.: Smoothed point interpolation method for elastoplastic analysis. Int. J. Comput. Methods 12(4), 1540013 (2015)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Zeng, W., Liu, G.R.: Smoothed finite element methods (S-FEM): an overview and recent developments. Arch. Comput. Methods Eng. 25(2), 397–435 (2018)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Cui, X.Y., Hu, X.B., Zeng, Y.: A Copula-based perturbation stochastic method for fiber-reinforced composite structures with correlations. Comput. Methods Appl. Mech. Eng. 322, 351–372 (2017)MathSciNetGoogle Scholar
  53. 53.
    Hu, X.B., Cui, X.Y., Liang, Z.M., Li, G.Y.: The performance prediction and optimization of the fiber-reinforced composite structure with uncertain parameters. Compos. Struct. 164, 207–218 (2017)Google Scholar
  54. 54.
    Tootoonchi, A., Khoshghalb, A., Liu, G.R.: A novel approach for application of smoothed point interpolation methods to axisymmetric problems in poroelasticity. Comput. Geotech. 102, 39–52 (2018)Google Scholar
  55. 55.
    Cui, X.Y., Wang, G., Li, G.Y.: A nodal integration axisymmetric thin shell model using linear interpolation. Appl. Math. Model. 40(4), 2720–2742 (2016)MathSciNetGoogle Scholar
  56. 56.
    Li, E., He, Z.C., Xu, X., Liu, G.R.: Hybrid smoothed finite element method for acoustic problems. Comput. Methods Appl. Mech. Eng. 283, 664–688 (2015)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Li, E., He, Z.C., Hu, J.Y., Long, X.Y.: Volumetric locking issue with uncertainty in the design of locally resonant acoustic metamaterials. Comput. Methods Appl. Mech. Eng. 324, 128–148 (2017)MathSciNetGoogle Scholar
  58. 58.
    He, Z.C., Li, E., Wang, G., Li, G.Y., Xia, Z.W.: Development of an efficient algorithm to analyze the elastic wave in acoustic metamaterials. Acta Mech. 227(10), 3015–3030 (2016)MathSciNetGoogle Scholar
  59. 59.
    Hu, X., Cui, X.Y., Zhang, Q.Y., Wang, G., Li, G.Y.: The stable node-based smoothed finite element method for analyzing acoustic radiation problems. Eng. Anal. Bound. Elem. 80, 142–151 (2017)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Li, E., Chen, J.N., Zhang, Z.P., Fang, J.G., Liu, G.R., Li, Q.: Smoothed finite element method for analysis of multi-layered systems–applications in biomaterials. Comput. Struct. 168, 16–29 (2016)Google Scholar
  61. 61.
    Liu, G.R., Nguyen-Thoi, T., Nguyen-Xuan, H., Lam, K.Y.: A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems. Comput. Struct. 87(1–2), 14–26 (2009)Google Scholar
  62. 62.
    Bie, Y.H., Cui, X.Y., Li, Z.C.: A coupling approach of state-based peridynamics with node-based smoothed finite element method. Comput. Methods Appl. Mech. Eng. 331, 675–700 (2018)MathSciNetGoogle Scholar
  63. 63.
    Cui, X.Y., Li, S., Feng, H., Li, G.Y.: A triangular prism solid and shell interactive mapping element for electromagnetic sheet metal forming process. J. Comput. Phys. 336, 192–211 (2017)MathSciNetGoogle Scholar
  64. 64.
    Zhou, L., Nie, B., Ren, S., Liu, R., Li, X., Xue, B.: Coupling magneto-electro-elastic cell-based smoothed radial point interpolation method for static and dynamic characterization of MEE structures. Acta Mech. 230(5), 1641–1662 (2019)MathSciNetGoogle Scholar
  65. 65.
    Liu, G.R.: A G space theory and a weakened weak (W-2) form for a unified formulation of compatible and incompatible methods: Part I theory. Int. J. Numer. Meth. Eng. 81(9), 1093–1126 (2010)zbMATHGoogle Scholar
  66. 66.
    Liu, G.R.: A G space theory and a weakened weak (W-2) form for a unified formulation of compatible and incompatible methods: Part II applications to solid mechanics problems. Int. J. Numer. Methods Eng. 81(9), 1127–1156 (2010)zbMATHGoogle Scholar
  67. 67.
    Zhou, L.M., Li, M., Chen, B.K., Li, F., Li, X.L.: An inhomogeneous cell-based smoothed finite element method for the nonlinear transient response of functionally graded magneto-electro-elastic structures with damping factors. J. Intell. Mater. Syst. Strut. 30(3), 416–437 (2019)Google Scholar
  68. 68.
    Wu, S.C., Liu, G.R., Zhang, H.O., Zhang, G.Y.: A node-based smoothed point interpolation method (NS-PIM) for three-dimensional thermoelastic problems. Numer. Heat Transf. Part A Appl. 54(12), 1121–1147 (2008)Google Scholar
  69. 69.
    Wu, S.C., Liu, G.R., Zhang, H.O., Xu, X., Li, Z.R.: A node-based smoothed point interpolation method (NS-PIM) for three-dimensional heat transfer problems. Int. J. Therm. Sci. 48(7), 1367–1376 (2009)Google Scholar
  70. 70.
    Wu, S.C., Li, G.R., Zhang, H.O., Zhang, G.Y.: A node-based smoothed point interpolation method (NS-PIM) for thermoelastic problems with solution bounds. Int. J. Heat Mass Transf. 52(5–6), 1464–1471 (2009)zbMATHGoogle Scholar
  71. 71.
    Du, C.F., Zhang, D.G., Li, L., Liu, G.R.: A node-based smoothed point interpolation method for dynamic analysis of rotating flexible beams. Acta. Mech. Sin. 34(2), 409–420 (2018)MathSciNetzbMATHGoogle Scholar
  72. 72.
    Zhou, L.M., Ren, S.H., Meng, G.W., Li, X.L., Cheng, F.: A multi-physics node-based smoothed radial point interpolation method for transient responses of magneto-electro-elastic structures. Eng. Anal. Bound. Elem. 101, 371–384 (2019)MathSciNetzbMATHGoogle Scholar
  73. 73.
    Pan, E.: Three-dimensional Green’s functions in anisotropic magneto-electro-elastic bimaterials. Z. Angew. Math. Phys. 53(5), 815–838 (2002)MathSciNetzbMATHGoogle Scholar
  74. 74.
    Annigeri, A.R., Ganesan, N., Swarnamani, S.: Free vibration behaviour of multiphase and layered magneto-electro-elastic beam. J. Sound Vib. 299(1–2), 44–63 (2007)Google Scholar
  75. 75.
    Li, Y., Liu, G.R., Yue, J.H.: A novel node-based smoothed radial point interpolation method for 2D and 3D solid mechanics problems. Comput. Struct. 196, 157–172 (2018)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations