Advertisement

Acta Mechanica

, Volume 230, Issue 10, pp 3499–3509 | Cite as

Numerical study on the axisymmetric state in spherical Couette flow under unstable thermal stratification

  • Taishi Inagaki
  • Tomoaki ItanoEmail author
  • Masako Sugihara-Seki
Original Paper
  • 30 Downloads

Abstract

This paper numerically investigates the shear flow between double concentric spherical boundaries rotating differentially, the so-called spherical Couette flow, under unstable thermal stratification, focusing on the boundary of the axisymmetric/nonaxisymmetric transition in wide-gap cases where the inner radius is comparable to the clearance width. While the transition of SCF has been confirmed experimentally in cases without thermal factor, insufficient knowledge on SCF subject to thermal instability, related to geophysical problems especially in the wide-gap cases, has been accumulated mainly based on numerical analysis; our motivation is to bridge the knowledge gap by a parameter extension. We reconfirm that the transition under no thermal effect is initiated by a disturbance visualised as a spiral pattern with n arms extending from the equatorial zone to the pole in each hemisphere, at the critical Reynolds number, \({{{Re}}}_{\mathrm{cr}}\), as previously reported. With increasing thermal factor, the buoyancy effect enables the system rotation to trigger a transition towards nonaxisymmetric states, resulting in a relative decrease in \({{{Re}}}_{\mathrm{cr}}\). This is in contrast with the result that the system rotation apparently suppresses via Coriolis effect the transition to the thermally convective states at low Reynolds numbers. The present study elucidates that the existence of the axisymmetric state is restricted within a closed area in the extended parameter space, along the boundary of which the spiral patterns observed experimentally in SCF continuously connect to the classical spherical Bénard convective states.

Notes

Acknowledgements

We thank Prof. Kageyama, Dr. Hori, Dr. Yokoyama, Prof. J. Seki, and Prof. N. Sugimoto for their critical comments at the earlier stages of the study. T.I. expresses cordial thanks to Prof. Adachi for offering his numerical code based on the spectral element method to check the validity of our code. T.I. is grateful for partial financial support from the Kansai University Subsidy for Supporting Young Scholars, 2016–2017, and an ORDIST group fund, 2018. M.S. is grateful for partial financial support from KAKENHI 17H03176. Finally, we would like to thank Editage for English language editing.

References

  1. 1.
    Godfrey, D.A.: A hexagonal feature around Saturn’s north pole. Icarus 76, 335–356 (1988)CrossRefGoogle Scholar
  2. 2.
    Jansson, T.R.N., Haspang, M.P., Jensen, K.H., Hersen, P., Bohr, T.: Polygons on a rotating fluid surface. Phys. Rev. Lett. 96, 174502 (2006)CrossRefGoogle Scholar
  3. 3.
    Tasaka, Y., Iima, M.: Flow transitions in the surface switching of rotating fluid. J. Fluid Mech. 636, 475–484 (2009)CrossRefGoogle Scholar
  4. 4.
    Itano, T., Generalis, S.C.: Hairpin vortex solution in planar Couette flow: a tapestry of knotted vortices. Phys. Rev. Lett. 102, 114501 (2009)CrossRefGoogle Scholar
  5. 5.
    Egbers, C., Rath, H.J.: The existence of Taylor vortices and wide-gap instabilities in spherical Couette flow. Acta Mechanica 111, 125–140 (1995)CrossRefGoogle Scholar
  6. 6.
    Wulf, P., Egbers, C., Rath, H.J.: Routes to chaos in wide-gap spherical Couette flow. Phys. Fluids 11, 1359–1372 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Araki, K., Mizushima, J., Yanase, S.: The nonaxisymmetric instability of the wide-gap spherical Couette flow. Phys. Fluids 9, 1197–1199 (1997)CrossRefGoogle Scholar
  8. 8.
    Munson, B.R., Menguturk, M.: Viscous incompressible flow between concentric rotating spheres. J. Fluid Mech. 69, 705–719 (1975)CrossRefGoogle Scholar
  9. 9.
    Belyaef, Y.N., Yavorskaya, I.M.: Spherical Couette flow: transitions and onset of chaos. Translated from: Izvestiya Akademii Nauk SSSR Mekh. Zhid. i Gaza 1, 10–18 (1991)MathSciNetGoogle Scholar
  10. 10.
    Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford (1961)zbMATHGoogle Scholar
  11. 11.
    Kida, S., Araki, K., Kitauchi, H.: Periodic reversals of magnetic field generated by thermal convection in a rotating spherical shell. J. Phys. Soc. Jpn. 66(7), 2194–2201 (1997)CrossRefGoogle Scholar
  12. 12.
    Sakuraba, A., Kono, M.: Effect of the inner core on the numerical solution of the magnetohydrodynamic dynamo. Phys. Earth Planet. Inter. 1111, 105–121 (1999)CrossRefGoogle Scholar
  13. 13.
    Fowler, C.M.R.: The Solid Earth. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  14. 14.
    Feudel, F., Bergemann, K., Tuckerman, L., Egbers, C., Futterer, B., Gellert, M., Hollerbach, R.: Convection patterns in a spherical fluid shell. Phys. Rev. E 83, 046304 (2011)CrossRefGoogle Scholar
  15. 15.
    Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE 93(2), 216–231 (2005). (Special issue on Program Generation, Optimization, and Platform Adaptation)CrossRefGoogle Scholar
  16. 16.
    Schaeffer, N.: Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations. Geochem. Geophys. Geosyst. 14(3), 751–758 (2013)CrossRefGoogle Scholar
  17. 17.
    Landau, L.D., Lifshitz, E.M.: Fluid Mechanics: Vol.6 (Course of Theoretical Physics), 2nd edn. Butterworth-Heinemann, Oxford (1987)Google Scholar
  18. 18.
    Hollerbach, R., Junk, M., Egbers, C.: Non-axisymmetric instabilities in basic state spherical Couette flow. Fluid Dyn. Res. 38, 257–273 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Nakabayashi, K., Tsuchida, Y., Zheng, Z.: Characteristics of disturbances in the larminar-turbulent transition of spherical Couette flow. 1. spiral Taylor-Görtler vortices and traveling waves for narrow gaps. Phys. Fluids 14, 3963–3972 (2002)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Marcus, P.S., Tuckerman, L.S.: Simulation of flow between concentric rotating spheres, part 1. Steady states. J. Fluid Mech. 185, 1–30 (1987)CrossRefGoogle Scholar
  21. 21.
    Schrauf, G.: The first instability in spherical Taylor-Couette flow. J. Fluid Mech. 166, 287–303 (1986)CrossRefGoogle Scholar
  22. 22.
    Hamilton, J.M., Kim, J., Waleffe, F.: Regeneration mechanisms of near-wall turbulence structures. Phys. Fluids 287, 317–348 (1995)zbMATHGoogle Scholar
  23. 23.
    Waleffe, F.: On a self-sustaining process in shear flows. Phys. Fluids 9, 883–900 (1997)CrossRefGoogle Scholar
  24. 24.
    Abbas, S., Yuan, L., Shah, A.: Simulation of spiral instabilities in wide-gap spherical Couette flow. Fluid Dyn. Res. 50, 025507 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Itano, T., Ninomiya, T., Konno, K., Sugihara-Seki, M.: Spiral roll state in heat convection between nonrotating concentric double spherical boundaries. J. Phys. Soc. Jpn. 84, 103401 (2015)CrossRefGoogle Scholar
  26. 26.
    Busse, F.H.: Patters of convection in spherical shells. J. Fluid Mech. 72(1), 67–85 (1975)CrossRefGoogle Scholar
  27. 27.
    Zebib, A., Schubert, G., Dein, J.L., Pariwal, R.C.: Character and stability of axisymmetric thermal convection in spheres and spherical shells. Geophys. Astrophys. Fluid Dyn. 23, 1–42 (1983)CrossRefGoogle Scholar
  28. 28.
    Li, L., Liao, X., Chan, K.H., Zhang, K.: On nonlinear multiarmed spiral waves in slowly rotating fluid systems. Phys. Fluids 22, 011701 (2010)CrossRefGoogle Scholar
  29. 29.
    Sigrist, R., Matthews, P.: Symmetric spiral patterns on spheres. SIAM J. Appl. Dyn. Syst. 10(3), 1177–1211 (2011)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Kita, T.: Principle of maximum entropy applied to Rayleigh-Bénard convection. J. Phys. Soc. Jpn. 75, 124005 (2006)CrossRefGoogle Scholar
  31. 31.
    Akinaga, T., Itano, T., Generalis, S.: Convection induced by instabilities in the presence of a transverse seepage. Chaos, Solitons Fractals 91, 533–543 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pure and Applied Physics, Faculty of Engineering ScienceKansai UniversityOsakaJapan

Personalised recommendations