Advertisement

Acta Mechanica

, Volume 230, Issue 12, pp 4145–4156 | Cite as

Mechano-electrochemical and buckling analysis of composition-gradient nanowires electrodes in lithium-ion battery

  • Hanzhong Xing
  • Yulan LiuEmail author
  • B. WangEmail author
Original Paper
  • 96 Downloads

Abstract

With the rapid development of lithium-ion batteries, the electrode becomes more and more miniaturized. It is necessary to analyze the stress and axial force in the nanowire electrode. The main work of this paper is to analyze the stresses and buckling in homogeneous material nanowire electrodes and two kinds of composition-gradient (positive gradient and negative gradient) material nanowire electrodes of lithium-ion batteries. Comparing the diffusion-induced stresses (DISs) and buckling in three electrodes, we analyze the advantage of composition-gradient material electrodes on DISs and axial forces. The finite deformation theory and the stress-induced diffusion hypothesis are adopted to establish the constitutive equations, and the nonlinear influence of large deformation is considered. We conclude that ratios of length to radius and constraint conditions have great influence on the buckling of nanowire electrodes. The composition-gradient materials can reduce the stress and prevent the electrode from buckling. Under the same constraint condition, the positive gradient with smaller ratio of length to radius and smaller diffusion flux can delay buckling. When the ratio of length to radius are larger and the diffusion flux is larger, the negative gradient can delay buckling. The results can provide a theoretical guidance on the way of charging operation and the design of electrodes.

Notes

Acknowledgements

We are grateful for support from National Natural Science Foundation of China Grant No. 11572355 and Grant No. 10572155.

References

  1. 1.
    Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001)CrossRefGoogle Scholar
  2. 2.
    Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652–657 (2008)CrossRefGoogle Scholar
  3. 3.
    Kasavajjula, U., Wang, C., Appleby, A.J.: Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sour. 163, 1003–1039 (2007)CrossRefGoogle Scholar
  4. 4.
    Zhang, W.J.: A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sour. 196, 13–24 (2011)CrossRefGoogle Scholar
  5. 5.
    Beaulieu, L.Y., Eberman, K.W., Turner, R.L., Krause, L.J., Dahn, J.R.: Colossal reversible volume changes in lithium alloys. Electrochem. Solid State Lett. 4, A137–140 (2001)CrossRefGoogle Scholar
  6. 6.
    Xiao, X., Liu, P., Verbrugge, M.W., Haftbaradaran, H., Gao, H.: Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries. J. Power Sour. 196, 1409–1416 (2011)CrossRefGoogle Scholar
  7. 7.
    Lee, S.W., McDowell, M.T., Berla, L.A., Nix, W.D., Cui, Y.: Fracture of crystalline silicon nanopillars during electrochemical lithium insertion. Proc. Natl. Acad. Sci. U. S. A. 109, 4080–4085 (2012)CrossRefGoogle Scholar
  8. 8.
    Zhao, K., Pharr, M., Vlassak, J.J., Suo, Z.: Fracture of electrodes in lithium-ion batteries caused by fast charging. J. Appl. Phys. (2010).  https://doi.org/10.1063/1.3492617 CrossRefGoogle Scholar
  9. 9.
    Prussin, S.: Generation and distribution of dislocations by solute diffusion. J. Appl. Phys. 32, 1876–1881 (1961)CrossRefGoogle Scholar
  10. 10.
    Zhang, J.Q., Lu, B., Song, Y.C., Ji, X.: Diffusion induced stress in layered Li-ion battery electrode plates. J. Power Sour. 209, 220–227 (2012)CrossRefGoogle Scholar
  11. 11.
    Christopher, M.D., Kurt, M., Martin, L.D.: Effects of electrode particle morphology on stress generation in silicon during lithium insertion. J. Power Sour. 196, 9672–9681 (2010)Google Scholar
  12. 12.
    Song, Y., Lu, B., Ji, X., Zhang, J.: Diffusion induced stresses in cylindrical lithium-ion batteries: analytical solutions and design insights. J. Electrochem. Soc. 159, A2060–2068 (2012)CrossRefGoogle Scholar
  13. 13.
    He, Y.L., Hu, H.J., Song, Y.C., Guo, Z.S., Liu, C., Zhang, J.Q.: Effects of concentration-dependent elastic modulus on the diffusion of lithium ions and diffusion induced stress in layered battery electrodes. J. Power Sour. 248, 517–523 (2014)CrossRefGoogle Scholar
  14. 14.
    Zhang, T., Guo, Z., Wang, Y., Zhu, J.: Effect of reversible electrochemical reaction on Li diffusion and stresses in cylindrical Li-ion battery electrodes. J. Appl. Phys. (2014).  https://doi.org/10.1063/1.4866423 CrossRefGoogle Scholar
  15. 15.
    John, C., John, N.: Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem. 10, 293–319 (2006)CrossRefGoogle Scholar
  16. 16.
    Pallab, B., Partha, P.M.: Stochastic analysis of diffusion induced damage in lithium-ion battery electrodes. J. Electrochem. Soc. 160, A955–967 (2013)CrossRefGoogle Scholar
  17. 17.
    Zhao, K., Pharr, M., Cai, S., Vlassak, J.J., Suo, Z.: Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge. J. Am. Ceram. Soc. 94, s226–235 (2011)CrossRefGoogle Scholar
  18. 18.
    Cui, Z., Gao, F., Qu, J.: A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J. Mech. Phys. Solids 60, 1280–1295 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Liu, D.Y., Chen, W.Q., Shen, X.D.: Diffusion-induced stresses in graphene-based composite bilayer electrode of lithium-ion battery. Compos. Struct. 165, 91–98 (2017)CrossRefGoogle Scholar
  20. 20.
    Duan, X.T., Jiang, W.J., Zou, Y.L., Lei, W.X., Ma, Z.S.: A coupled electrochemical-thermal-mechanical model for spiral-wound Li-ion batteries. J. Mater. Sci. 53, 10987–11001 (2018)CrossRefGoogle Scholar
  21. 21.
    Weng, L., Zhou, J.Q., Cai, R.: Analytical model of Li-ion diffusion-induced stress in nanowire and negative Poisson’s ratio electrode under different operations. Int. J. Mech. Sci. 141, 245–261 (2018)CrossRefGoogle Scholar
  22. 22.
    Zhang, K., Li, Y., Zheng, B.L., Wu, G.P., Wu, J.S., Yang, F.Q.: Large deformation analysis of diffusion-induced buckling of nanowires in lithium-ion batteries. Int. J. Solids Struct. 108, 230–243 (2017)CrossRefGoogle Scholar
  23. 23.
    Zhu, Z.Q., Hu, H.J., He, Y.L., Tao, B.: Buckling analysis and control of layered electrode structure at finite deformation. Compos. Struct. 204, 822–830 (2018)CrossRefGoogle Scholar
  24. 24.
    Hou, P.Y., Zhang, L.Q., Gao, X.P.: A high-energy, full concentration-gradient cathode material with excellent cycle and thermal stability for lithium ion batteries. J. Mater. Chem. A 2, 17130–17138 (2014)CrossRefGoogle Scholar
  25. 25.
    Liu, W., Oh, P., Liu, X., Lee, M.J., Cho, W., Chee, S., Kim, Y., Cho, J.: Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 54, 4440–4457 (2015)CrossRefGoogle Scholar
  26. 26.
    Wei, Q., Wang, X., Yang, X., Ju, B., Hu, B., Shu, H., Wen, W., Zhou, M., Song, Y., Wu, H., Hu, H.: Spherical concentration-gradient LiMn1.87Ni0.13O4 spinel as a high performance cathode for lithium ion batteries. J. Mater. Chem. A 1, 4010–4016 (2013)CrossRefGoogle Scholar
  27. 27.
    Jr, G.M.K., Belharouak, I., Deng, H., Sun, Y.K., Amine, K.: Composition-tailored synthesis of gradient transition metal precursor particles for lithium-ion battery cathode materials. Chem. Mater. 23, 2863–2870 (2011)Google Scholar
  28. 28.
    Li, Y., Zhang, K., Zheng, B.: Stress analysis in spherical composition-gradient electrodes of lithium-ion battery. J. Electrochem. Soc. 162, A223–228 (2015)CrossRefGoogle Scholar
  29. 29.
    Cui, Z., Gao, F., Qu, J.: A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J. Mech. Phys. Solids 60, 1280–1295 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Zhong, Y.T., Liu, Y.L., Wang, B.: Stress analysis in cylindrical composition-gradient electrodes of lithium-ion battery. AIP Adv. (2017).  https://doi.org/10.1063/1.4986542 CrossRefGoogle Scholar
  31. 31.
    Larché, F.C., Cahn, J.W.: The interactions of composition and stress in crystalline solids. Acta Metall. 33, 331–357 (1985)CrossRefGoogle Scholar
  32. 32.
    Peng, Y.Z., Zhang, K., Zheng, B.L., Li, Y.: Stress analysis of a cylindrical composition-gradient electrode of lithium-ion battery in generalized plane strain condition. Acta Phys Sin. (2016).  https://doi.org/10.7498/aps.65.100201
  33. 33.
    Li, Y., Zhang, K., Zheng, B.: Interaction between diffusion and stresses in composition-gradient electrodes. Solid State Ion. 283, 103–108 (2015)CrossRefGoogle Scholar
  34. 34.
    Huggins, R.A., Nix, W.D.: Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6, 57–63 (2000)CrossRefGoogle Scholar
  35. 35.
    Tanmay, K.B., Gao, H.J.: Cohesive modeling of crack nucleation under diffusion induced stresses in a thin strip: implications on the critical size for flaw tolerant battery electrodes. Int. J. Solids Struct. 40, 1424–1434 (2010)zbMATHGoogle Scholar
  36. 36.
    Woodford, W.H., Chiang, Y.M., Carter, W.C.: “Electrochemical shock” of intercalation electrodes: a fracture mechanics analysis. J. Electrochem. Soc. 157, A1052–1059 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Aeronautics and AstronauticsSun Yat-Sen UniversityGuangzhouChina
  2. 2.School of PhysicsSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations