Pure bending of a piezoelectric layer in second gradient electroelasticity theory

  • Yury SolyaevEmail author
  • Sergey Lurie
Original Paper


The semi-inverse analytical solution of a pure bending problem for a piezoelectric layer is developed in the framework of linear electroelasticity theory with strain gradient and electric field gradient effects. The simplified gradient theory of transversely isotropic material with a single additional length scale parameter is considered. A two-dimensional solution is derived assuming plane strain state of a layer (cylindrical bending of a plate) and low dielectric properties of the surrounding medium. The electromechanical response of a layer is found under conditions of prescribed bending moments at the end faces. Boundary conditions on the top and bottom surfaces of a layer are satisfied exactly. The analytical solution is validated based on numerical finite element modeling. It is shown that the obtained solutions can be used for the validation of size-dependent beam and plate models in the second gradient electroelasticity theory.

Mathematics Subject Classification

74F15 74G05 74A30 



This work was supported by the Russian Science Foundation under Grant 17-79-20105 issued to the Moscow Aviation Institute.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Yang, J.: A review of a few topics in piezoelectricity. Appl. Mech. Rev. 59(6), 335 (2006). CrossRefGoogle Scholar
  2. 2.
    Majdoub, M., Sharma, P., Çağin, T.: Dramatic enhancement in energy harvesting for a narrow range of dimensions in piezoelectric nanostructures. Phys. Rev. B 78(12), 121407 (2008)CrossRefGoogle Scholar
  3. 3.
    Yan, Z., Jiang, L.: Modified continuum mechanics modeling on size-dependent properties of piezoelectric nanomaterials: a review. Nanomaterials (2017). Google Scholar
  4. 4.
    Oates, W.S.: Flexoelectricity, strain gradients, and singularities in ferroelectric nanostructures. J. Intell. Mater. Syst. Struct. 28(20), 3091–3105 (2017). CrossRefGoogle Scholar
  5. 5.
    Sharma, N.D., Maranganti, R., Sharma, P.Ã.: On the possibility of piezoelectric nanocomposites without using piezoelectric materials. J. Mech. Phys. Solids 55, 2328–2350 (2007). CrossRefzbMATHGoogle Scholar
  6. 6.
    Tagantsev, P.V., Yudin, A.K.: Fundamentals of flexoelectricity in solids. Nanotechnology (2013). Google Scholar
  7. 7.
    Wang, K., Wang, B.: Electrostatic potential in a bent piezoelectric nanowire with consideration of size-dependent piezoelectricity and semiconducting characterization. Nanotechnology (2018). Google Scholar
  8. 8.
    Mindlin, R.D.: Polarization gradient in elastic dielectrics. Int. J. Solids Struct. 4(6), 637–642 (1968)CrossRefzbMATHGoogle Scholar
  9. 9.
    Sahin, E., Dost, S.: A strain-gradients theory of elastic dielectrics with spatial dispersion. Int. J. Eng. Sci. 26(12), 1231–1245 (1988)CrossRefGoogle Scholar
  10. 10.
    Kafadar, C.B.: The theory of multipoles in classical electromagnetism. Int. J. Eng. Sci. 9(9), 831–853 (1971)CrossRefzbMATHGoogle Scholar
  11. 11.
    Arvanitakis, A.: Gradient effects in a new class of electro-elastic bodies. Zeitschrift für angewandte Mathematik und Physik 69(3), 62 (2018). MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Liang, X., Shen, S.: Size-dependent piezoelectricity and elasticity due to the electric field-strain gradient coupling and strain gradient elasticity. Int. J. Appl. Mech. 05(02), 1350015 (2013). CrossRefGoogle Scholar
  13. 13.
    Enakoutsa, K., Vescovo, D.D., Scerrato, D.: Combined polarization field gradient and strain field gradient effects in elastic flexoelectric materials (2015).
  14. 14.
    Ieşan, D.: A theory of thermopiezoelectricity with strain gradient and electric field gradient effects. Eur. J. Mech. A/Solids 67, 280–290 (2018). MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Liu, C., Ke, L.L., Yang, J., Kitipornchai, S., Wang, Y.S.: Buckling and post-buckling analyses of size-dependent piezoelectric nanoplates. Theor. Appl. Mech. Lett. 6(6), 253–267 (2016). CrossRefGoogle Scholar
  16. 16.
    Hadjesfandiari, A.R.: Size-dependent piezoelectricity. Int. J. Solids Struct. 50(18), 2781–2791 (2013). arXiv:1206.6718 CrossRefGoogle Scholar
  17. 17.
    Malikan, M.: Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory. Appl. Math. Model. 48, 196–207 (2017). MathSciNetCrossRefGoogle Scholar
  18. 18.
    Liang, X., Hu, S., Shen, S.: Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Mater. Struct. 23(3), 035020 (2014)CrossRefGoogle Scholar
  19. 19.
    Shen, S., Hu, S.: A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58(5), 665–677 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Nasedkin, A.V., Eremeyev, V.A.: Harmonic vibrations of nanosized piezoelectric bodies with surface effects. ZAMM J. Appl. Math. 94(10), 878–892 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Wang, K.F., Wang, B.L.: The electromechanical coupling behavior of piezoelectric nanowires: surface and small-scale effects. Epl 97(6), (2012).
  22. 22.
    Liang, X., Hu, S., Shen, S.: Bernoulli-euler dielectric beam model based on strain-gradient effect. J. Appl. Mech. 80(4), 044502 (2013)CrossRefGoogle Scholar
  23. 23.
    Wang, K., Wang, B.: Electrostatic potential in a bent piezoelectric nanowire with consideration of size-dependent piezoelectricity and semiconducting characterization. Nanotechnology 29(25), 255405 (2018)CrossRefGoogle Scholar
  24. 24.
    Yue, Y., Xu, K., Aifantis, E.C.: Strain gradient and electric field gradient effects in piezoelectric cantilever beams. J. Mech. Behav. Mater. 24(3–4), 121–127 (2015)Google Scholar
  25. 25.
    Yang, W., Liang, X., Shen, S.: Electromechanical responses of piezoelectric nanoplates with flexoelectricity. Acta Mech. 226(9), 3097–3110 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Baroudi, S., Najar, F., Jemai, A.: International journal of solids and structures static and dynamic analytical coupled field analysis of piezoelectric flexoelectric nanobeams : A strain gradient theory approach. Int. J. Solids Struct. 135, 110–124 (2018). CrossRefGoogle Scholar
  27. 27.
    Lurie, A., Belyaev, A.: Theory of elasticity. Foundations of engineering mechanics. Springer, Berlin (2005). 10(1007):978–983Google Scholar
  28. 28.
    Iesan, D.: On Saint-Venant’s problem for elastic dielectrics. J. Elast. 21(32), 101–115 (1989). MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Davi, F.: Saint-Venant’s problem for linear piezoelectric bodies. J. Elast. 43(3), 227–245 (1996). MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Dell’Isola, F., Rosa, L.: Saint Venant problem in linear piezoelectricity. In smart structures and materials 1996: mathematics and control in smart structures. SPIE 2715(2), 399–410 (1996)Google Scholar
  31. 31.
    Bisegna, P.: The Saint-Venant problem for monoclinic piezoelectric cylinders. Z. Angew. Math. Mech. 78(3), 147–165 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Rovenski, V., Harash, E., Abramovich, H.: Saint-Venant ’s problem for homogeneous piezoelectric beams. J. Appl. Mech. 74, 1095–1103 (2007). CrossRefGoogle Scholar
  33. 33.
    Batra, R.C., Dell’Isola, F., Ruta, G.C.: Second-order solution of Saint-Venant’s problem for an elastic bar predeformed in flexure. Int. J. Non-Linear Mech. 40(2–3), 411–422 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Krommer, M.: On the correction of the Bernoulli-Euler beam theory for smart piezoelectric beams. Smart Mater. Struct. 10(4), 668–680 (2001). CrossRefGoogle Scholar
  35. 35.
    Heyliger, P.R., Brooks, S.: Exact solutions for laminated piezoelectric plates in cylindrical bending. J. Appl. Mech. 63(4), 903–910 (1996). CrossRefzbMATHGoogle Scholar
  36. 36.
    Heyliger, P.: Exact solutions for simply supported laminated piezoelectric plates. J. Appl. Mech. 64(2), 299 (1997). CrossRefzbMATHGoogle Scholar
  37. 37.
    Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13(2), 125–147 (1983). CrossRefzbMATHGoogle Scholar
  38. 38.
    Bîrsan, M., Altenbach, H.: On the theory of porous elastic rods. Int. J. Solids Struct. 48(6), 910–924 (2011). CrossRefzbMATHGoogle Scholar
  39. 39.
    Ieşan, D.: On Saint-Venant’s problem in micropolar elasticity. Int. J. Eng. Sci. 9(10), 879–888 (1971)CrossRefzbMATHGoogle Scholar
  40. 40.
    Reddy, G.K., Venkatasubramanian, N.: On the flexural rigidity of a micropolar elastic circular cylinder. J. Appl. Mech. 45(2), 429–431 (1978)CrossRefGoogle Scholar
  41. 41.
    Iesan, D., Nappa, L.: Saint-Venants problem for microstretch elastic solids. Int. J. Eng. Sci. 32(2), 229–236 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Lurie, S., Solyaev, Y.: Revisiting bending theories of elastic gradient beams. Int. J. Eng. Sci. 126, 1–21 (2018). MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964). MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Mindlin, R.D., Eshel, N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)CrossRefzbMATHGoogle Scholar
  45. 45.
    Placidi, L., El Dhaba, A.R.: Semi-inverse method à la Saint-Venant for two-dimensional linear isotropic homogeneous second-gradient elasticity. Math. Mech. Solids 22(5), 919–937 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Placidi, L., Barchiesi, E., Battista, A.: An inverse method to get further analytical solutions for a class of metamaterials aimed to validate numerical integrations. In: Mathematical Modelling in Solid Mechanics, pp. 193–210. Springer (2017)Google Scholar
  47. 47.
    Kalpakides, V.K., Agiasofitou, E.K.: On material equations in second gradient electroelasticity. J. Elast. 67(3), 205–227 (2002). MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Hu, S., Shen, S.: Electric field gradient theory with surface effect for nano-dielectrics. Comput. Mater. Continua 13(1), 63 (2009)Google Scholar
  49. 49.
    Sladek, J., Sladek, V., Wünsche, M.: Zhang C (2018) Effects of electric field and strain gradients on cracks in piezoelectric solids. Eur. J. Mech: A Solids 71, 187–198 (2017).,
  50. 50.
    Yue, Y.M., Xu, K.Y., Aifantis, E.C.: Microscale size effects on the electromechanical coupling in piezoelectric material for anti-plane problem. Smart Mater. Struct. (2014).
  51. 51.
    Solyaev, Y., Lurie, S.: Numerical predictions for the effective size-dependent properties of piezoelectric composites with spherical inclusions. Compos. Struct. 202, 1099–1108 (2018). CrossRefGoogle Scholar
  52. 52.
    Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48(13), 1962–1990 (2011)CrossRefGoogle Scholar
  53. 53.
    Park, S., Gao, X.: Bernoulli-euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16(11), 2355 (2006)CrossRefGoogle Scholar
  54. 54.
    Eremeyev, V.A., Dell’Isola, F., Boutin, C., Steigmann, D.: Linear pantographic sheets: existence and uniqueness of weak solutions. J. Elast. 132, 1–22 (2017)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Parton, V., Kudryavtsev, B.: Electromagnetoelasticity. Gordon and Breach Science Publishers, New York (1988). 90,059–0Google Scholar
  56. 56.
    Yang, X.M., Hu, Y.T., Yang, J.S.: Electric field gradient effects in anti-plane problems of polarized ceramics. Int. J. Solids Struct. 41, 6801–6811 (2004). CrossRefzbMATHGoogle Scholar
  57. 57.
    Polizzotto, C.: A gradient elasticity theory for second-grade materials and higher order inertia. Int. J. Solids Struct. 49(15–16), 2121–2137 (2012)CrossRefGoogle Scholar
  58. 58.
    Lurie, S., Solyaev, Y., Volkov, A., Volkov-Bogorodskiy, D.: Bending problems in the theory of elastic materials with voids and surface effects. Math. Mech. Solids 23(5), 787–804 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Dell’Isola, F., Batra, R.C.: Saint-Venant’s problem for porous linear elastic materials. J. Elast. 47(1), 73–81 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Lim, C.W., He, L.H.: Exact solution of a compositionally graded piezoelectric layer under uniform stretch, bending and twisting. Int. J. Mech. Sci. 43(11), 2479–2492 (2001). CrossRefzbMATHGoogle Scholar
  61. 61.
    Lurie, S., Solyaev, Y., Shramko, K.: Comparison between the Mori-Tanaka and generalized self-consistent methods in the framework of anti-plane strain inclusion problem in strain gradient elasticity. Mech. Mater. 122, 133–144 (2018)CrossRefGoogle Scholar
  62. 62.
    Reiher, J.C., Giorgio, I., Bertram, A.: Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity. J. Eng. Mech. 143(2), 04016112 (2016)CrossRefGoogle Scholar
  63. 63.
    Mitchell, J., Reddy, J.: A refined hybrid plate theory for composite laminates with piezoelectric laminae. Int. J. Solids Struct. 32(16), 2345–2367 (1995)CrossRefzbMATHGoogle Scholar
  64. 64.
    Dell’Isola, F., Rosa, L.: Almansi-type boundary conditions for electric potential inducing flexure in linear piezoelectric beams. Continuum Mech. Thermodyn. 9(2), 115–125 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Chróścielewski, J., Schmidt, R., Eremeyev, V.A.: Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches. Continuum Mech. Thermodyn. 31(1), 147–188 (2019)MathSciNetCrossRefGoogle Scholar
  66. 66.
    Abo-el nour, N., Hamdan, A.M., Giorgio, I., Del Vescovo, D.: The mathematical model of reflection and refraction of longitudinal waves in thermo-piezoelectric materials. Arch. Appl. Mech. 84(9–11), 1229–1248 (2014)zbMATHGoogle Scholar
  67. 67.
    Rosi, G., Pouget, J., Dell’Isola, F.: Control of sound radiation and transmission by a piezoelectric plate with an optimized resistive electrode. Eur. J. Mech. A/Solids 29(5), 859–870 (2010)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Abd-alla, AenN, Alshaikh, F., Del Vescovo, D., Spagnuolo, M.: Plane waves and eigenfrequency study in a transversely isotropic magneto-thermoelastic medium under the effect of a constant angular velocity. J. Therm. Stresses 40(9), 1079–1092 (2017)CrossRefGoogle Scholar
  69. 69.
    Turco, E.: Tools for the numerical solution of inverse problems in structural mechanics: review and research perspectives. Eur. J. Environ. Civ. Eng. 21(5), 509–554 (2017)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Andreaus, U., Dell’Isola, F., Giorgio, I., Placidi, L., Lekszycki, T., Rizzi, N.L.: Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity. Int. J. Eng. Sci. 108, 34–50 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Lurie, S., Solyaev, Y.: On the formulation of elastic and electroelastic gradient beam theories. Continuum Mech. Thermodyn. (2019). zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Applied Mechanics of the Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Aviation InstituteMoscowRussia

Personalised recommendations