Advertisement

Acta Mechanica

, Volume 230, Issue 10, pp 3633–3643 | Cite as

Galerkin-type solution for the theory of strain and temperature rate-dependent thermoelasticity

  • Manushi Gupta
  • Santwana MukhopadhyayEmail author
Original Paper
  • 40 Downloads

Abstract

Ultrafast heating has gained serious attention due to technological advancements in recent years. The thermoelastic process accounting for the finite speed of thermal signals is therefore becoming increasingly important. With the help of extended thermodynamics, Yu et al. (Meccanica 53(10):2543–2554, 2018) have established a thermoelastic model by including the strain rate and temperature rate in the constitutive equations. This model is also an attempt to remove the discontinuity in the displacement field under temperature rate-dependent thermoelasticity theory. The present work seeks to derive the representation of a Galerkin-type solution in the context of this recently proposed model in terms of elementary functions. The representation theorem of the Galerkin-type solution of the system of equations for steady oscillation is also proved. In accordance with this theorem, we finally establish a theorem which expresses the general solution of the system of homogeneous equations of steady oscillation in terms of metaharmonic functions.

Notes

References

  1. 1.
    Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)CrossRefGoogle Scholar
  3. 3.
    Cattaneo, C.: A form of heat-conduction equations which eliminates the paradox of instantaneous propagation. C. R. 247, 431–433 (1958)zbMATHGoogle Scholar
  4. 4.
    Vernotte, P.: Les paradoxes de la théorie continue de l’équation de lachaleur. C. R. 246, 3154–3155 (1958)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Vernotte, P.: Some possible complications in the phenomena of thermal conduction. C. R. 252, 2190–2191 (1961)Google Scholar
  6. 6.
    Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)CrossRefGoogle Scholar
  7. 7.
    Chandrasekharaiah, D., Srikantiah, K.R.: Temperature-rate dependent thermoelastic waves in a half-space. Indian J. Technol. 24(2), 66–70 (1986)zbMATHGoogle Scholar
  8. 8.
    Chandrasekharaiah, D.S., Srikantiah, K.R.: On temperature-rate dependent thermoelastic interactions in an infinite solid due to a point heat-source. Indian J. Technol. 25(1), 1–7 (1987)zbMATHGoogle Scholar
  9. 9.
    Dhaliwal, R.S., Rokne, J.G.: One-dimensional thermal shock problem with two relaxation times. J. Therm. Stresses 12(2), 259–279 (1989)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chatterjee, G., Roychoudhuri, S.K.: On spherically symmetric temperature-rate dependent thermoelastic wave propagation. J. Math. Phys. Sci. 24, 251–264 (1990)zbMATHGoogle Scholar
  11. 11.
    Ignaczak, J., Mrówka-Matejewska, E.B.: One-dimensional Green’s function in temperature-rate dependent thermoelasticity. J. Therm. Stresses 13(3), 281–296 (1990)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51(12), 705–729 (1998)CrossRefGoogle Scholar
  13. 13.
    Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. A 432, 171–194 (1991)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stresses 15(2), 253–264 (1992)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31(3), 189–208 (1993)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Tzou, D.Y.: A unified field approach for heat conduction from macro-to micro-scales. J. Heat Transf. 117(1), 8–16 (1995)CrossRefGoogle Scholar
  17. 17.
    Tzou, D.Y.: The generalized lagging response in small-scale and high-rate heating. Int. J. Heat Mass Transf. 38(17), 3231–3240 (1995)CrossRefGoogle Scholar
  18. 18.
    Yu, Y.J., Xue, Z.-N., Tian, X.-G.: A modified Green–Lindsay thermoelasticity with strain rate to eliminate the discontinuity. Meccanica 53(10), 2543–2554 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Quintanilla, R.: Some qualitative results for a modification of the Green–Lindsay thermoelasticity. Meccanica 53(14), 3607–3613 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Galerkin, B.: Contribution à la solution gènèrale du problème de la thèorie de ì èlasticite, dans le cas de trois dimensions. C. R. Acad. Sci. Paris 190, 1047–1048 (1930)zbMATHGoogle Scholar
  21. 21.
    Iacovache, M.: O extindere a metogei lui Galerkin pentru sistemul ecuatiilor elsticittii. Bull. St. Acad. Rep. Pop Romane A 1, 593–596 (1949)MathSciNetGoogle Scholar
  22. 22.
    Nowacki, W.: Green functions for the thermoelastic medium. Bull. Acad. Polon. Sci. Ser. Sci. Tech. 12, 465–472 (1964)zbMATHGoogle Scholar
  23. 23.
    Nowacki, W.: On the completeness of potentials in micropolar elasticity. Arch. Mech. Stos. 21, 107–122 (1969)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Sandru, N.: On some problems of the linear theory of the asymmetric elasticity. Int. J. Eng. Sci. 4(1), 81–94 (1966)CrossRefGoogle Scholar
  25. 25.
    Gurtin, M.E.: The linear theory of elasticity. In: Truesdell, C. (ed.) Encyclopedia of Physics, vol. VIa/2, pp. 1–295. Springer, Berlin (1972)Google Scholar
  26. 26.
    Nowacki, W.: Dynamic Problems in Thermoelasticity. Noordhoff, Leyden (1975)zbMATHGoogle Scholar
  27. 27.
    Kupradze, V.D., Gegelia, T.G., Basheleishvili, M.O., Burchuladze, T.V.: Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland, Amsterdam (1979)Google Scholar
  28. 28.
    Scalia, A., Svanadze, M.: On the representations of solutions of the theory of thermoelasticity with microtemperatures. J. Therm. Stresses 29(9), 849–863 (2006)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Chandrasekharaiah, D.: Complete solutions in the theory of elastic materials with voids. Q. J. Mech. Appl. Math. 40(3), 401–414 (1987)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Chandrasekharaiah, D.: Complete solutions in the theory of elastic materials with voids—II. Q. J. Mech. Appl. Math. 42(1), 41–54 (1989)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Ciarletta, M.: A solution of Galerkin type in the theory of thermoelastic materials with voids. J. Therm. Stresses 14(4), 409–417 (1991)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Ciarletta, M.: General theorems and fundamental solutions in the dynamical theory of mixtures. J. Elast. 39(3), 229–246 (1995)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Ciarletta, M.: A theory of micropolar thermoelasticity without energy dissipation. J. Therm. Stresses 22(6), 581–594 (1999)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Svanadze, M.Zh.: Representation of the general solution of the equation of steady-state oscillations of two component elastic mixtures. Prikladnaia Mekhanika 29, 22–29 (1993)Google Scholar
  35. 35.
    Svanadze, M., de Boer, R.: On the representations of solutions in the theory of fluid-saturated porous media. Q. J. Mech. Appl. Math. 58(4), 551–562 (2005)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Mukhopadhyay, S., Kothari, S., Kumar, R.: On the representation of solutions for the theory of generalized thermoelasticity with three phase-lags. Acta Mech. 214, 305–314 (2010)CrossRefGoogle Scholar
  37. 37.
    Roychoudhuri, S.K.: On a thermoelastic three-phase-lag model. J. Therm. Stresses 30(3), 231–238 (2007)CrossRefGoogle Scholar
  38. 38.
    Kothari, S., Mukhopadhyay, S.: On the representations of solutions in the theory of generalized thermoelastic diffusion. Math. Mech. Solids 17(2), 120–130 (2012)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Sherief, H.H., Hamza, F.A., Saleh, H.A.: The theory of generalized thermoelastic diffusion. Int. J. Eng. Sci. 42, 591–608 (2004)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Svanadze, M.M.: On the solutions of equations of the linear thermoviscoelasticity theory for Kelvin–Voigt materials with voids. J. Therm. Stresses 37(3), 253–269 (2014)CrossRefGoogle Scholar
  41. 41.
    Svanadze, M.M.: On the solutions in the linear theory of micropolar viscoelasticity. Mech. Res. Commun. 81, 17–25 (2017)CrossRefGoogle Scholar
  42. 42.
    Giorgashvili, L., Jaghmaidze, A., Karseladze, G., et al.: Boundary value problems of stationary oscillation of thermoelasticity of microstretch materials with microtemperatures. Georgian Math. J. 22(1), 57–70 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesIndian Institute of Technology (BHU)VaranasiIndia

Personalised recommendations