Advertisement

Acta Mechanica

, Volume 230, Issue 7, pp 2447–2453 | Cite as

Adhesive contact between a rigid body of arbitrary shape and a thin elastic coating

  • Qiang Li
  • Valentin L. PopovEmail author
Original Paper

Abstract

Application of the principle of energy balance to a rigid indenter in contact with a thin elastic layer on a flat rigid substrate provides a very simple derivation of the detachment criterion which earlier has been obtained by much more complicated asymptotic analysis. The simple criterion is additionally confirmed by the fully three-dimensional simulations of contact with a coated rigid substrate using the recently developed formulation of the boundary element method for coated media. The found detachment criterion is applied to contact of indenters of various shape. In the case of flat-ended indenters, the adhesive strength occurs to be proportional to the area of the face of the indenter (independently of the shape). The asymptotic criterion is also used for calculation of the adhesion strength of indenters having arbitrary shape and is illustrated with a case study of a contact of a rough indenter with a coated substrate.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge partial financial support of the Deutsche Forschungsgemeinschaft (DFG PO 810/55-1).

References

  1. 1.
    Matheson, R.R.: 20th-to 21st-century technological challenges in soft coatings. Science 297, 976–979 (2002).  https://doi.org/10.1126/science.1075707 CrossRefGoogle Scholar
  2. 2.
    Mittal, K.L.: Adhesion Aspects of Polymeric Coatings. Springer, New York (2012)Google Scholar
  3. 3.
    Pastewka, L., Robbins, M.O.: Contact between rough surfaces and a criterion for macroscopic adhesion. Proc. Natl. Acad. Sci. 111, 3298–3303 (2014).  https://doi.org/10.1073/pnas.1320846111 CrossRefGoogle Scholar
  4. 4.
    Ciavarella, M., Papangelo, A.: A generalized Johnson parameter for pull-off decay in the adhesion of rough surfaces. Phys. Mesomech. 21, 67–75 (2018).  https://doi.org/10.1134/S1029959918010095 CrossRefGoogle Scholar
  5. 5.
    Popov, V.L., Pohrt, R., Li, Q.: Strength of adhesive contacts: influence of contact geometry and material gradients. Friction 5, 308–325 (2017).  https://doi.org/10.1007/s40544-017-0177-3 CrossRefGoogle Scholar
  6. 6.
    Li, Q., Popov, V.L.: Adhesive force of flat indenters with brush-structure. Facta Univ. Ser. Mech. Eng. 16, 1–8 (2018).  https://doi.org/10.22190/FUME171220005L CrossRefGoogle Scholar
  7. 7.
    Heepe, L., Gorb, S.N.: Biologically inspired mushroom-shaped adhesive microstructures. Annu. Rev. Mater. Res. 44, 173–203 (2014).  https://doi.org/10.1146/annurev-matsci-062910-100458 CrossRefGoogle Scholar
  8. 8.
    Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A. 324, 301–313 (1971)CrossRefGoogle Scholar
  9. 9.
    Hertz, H.: Über die Berührung fester elastischer Körper. J. für die reine und Angew. Math. 92, 156–171 (1882)zbMATHGoogle Scholar
  10. 10.
    Griffith, A.A.: VI. The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 221, 163–198 (1921).  https://doi.org/10.1098/rsta.1921.0006 CrossRefGoogle Scholar
  11. 11.
    Borodich, F.M., Galanov, B.A., Suarez-Alvarez, M.M.: The JKR-type adhesive contact problems for power-law shaped axisymmetric punches. J. Mech. Phys. Solids. 68, 14–32 (2014).  https://doi.org/10.1016/j.jmps.2014.03.003 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Johnson, K.L., Greenwood, J.A.: An approximate JKR theory for elliptical contacts. J. Phys. D. Appl. Phys. 38, 1042–1046 (2005).  https://doi.org/10.1088/0022-3727/38/7/012 CrossRefGoogle Scholar
  13. 13.
    Johnson, K.L.: The adhesion of two elastic bodies with slightly wavy surfaces. Int. J. Solids Struct. 32, 423–430 (1995).  https://doi.org/10.1016/0020-7683(94)00111-9 CrossRefzbMATHGoogle Scholar
  14. 14.
    Yang, F.: Adhesive contact between a rigid axisymmetric indenter and an incompressible elastic thin film. J. Phys. D. Appl. Phys. 35, 2614–2620 (2002).  https://doi.org/10.1088/0022-3727/35/20/322 CrossRefGoogle Scholar
  15. 15.
    Yang, F.: Asymptotic solution to axisymmetric indentation of a compressible elastic thin film. Thin Solid Films 515, 2274–2283 (2006).  https://doi.org/10.1016/j.tsf.2006.07.151 CrossRefGoogle Scholar
  16. 16.
    Argatov, I.I., Mishuris, G.S., Popov, V.L.: Asymptotic modelling of the JKR adhesion contact for a thin elastic layer. Q. J. Mech. Appl. Math. 69, 161–179 (2016).  https://doi.org/10.1093/qjmam/hbw002 MathSciNetCrossRefGoogle Scholar
  17. 17.
    Papangelo, A.: Adhesion between a power-law indenter and a thin layer coated on a rigid substrate. Facta Univ. Ser. Mech. Eng. 16, 19–28 (2018).  https://doi.org/10.22190/FUME180102008P CrossRefGoogle Scholar
  18. 18.
    Ciavarella, M.: A very simple estimate of adhesion of hard solids with rough surfaces based on a bearing area model. Meccanica 53, 241–250 (2018).  https://doi.org/10.1007/s11012-017-0701-6 MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ciavarella, M., Papangelo, A., Barber, J.R.: The role of adhesion in contact mechanics. J. R. Soc. Interface 16, 20180738 (2019).  https://doi.org/10.1098/rsif.2018.0738 CrossRefGoogle Scholar
  20. 20.
    Popov, V.L.: Contact Mechanics and Friction. Physical Principles and Applications. Springer, Berlin (2017)CrossRefGoogle Scholar
  21. 21.
    Li, Q., Pohrt, R., Lyashenko, I.A., Popov, V.L.: Boundary element method for non-adhesive and adhesive contacts of a coated elastic half-space. arXiv:1807.01885 (2018)

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für MechanikTechnische Universität BerlinBerlinGermany
  2. 2.National Research Tomsk State UniversityTomskRussia
  3. 3.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations