Acta Mechanica

, Volume 230, Issue 7, pp 2309–2324 | Cite as

Statistical analysis of composites reinforced with randomly distributed fibers using a meshless method

  • J. F. Wang
  • D. S. Huang
  • W. ZhangEmail author
Original Paper


This paper adopts a meshless method that combines the moving least-squares approximation and Galerkin weak form to investigate the mechanical properties of unidirectional fiber-reinforced composites under a lateral load. The degree of nonuniformity is adopted to quantify the spatial distribution of randomness during simulation, and then the numerical implementation is developed to generate a representative volume element (RVE) model with random distribution of fibers. A statistical analysis is carried out by using three descriptors, that is, inter-fiber distance, second-order intensity function and radial distribution function. Numerical examples are presented to illustrate the accuracy of the proposed multiscale meshless method, and excellent agreement is achieved in comparison with experiments and the finite element method. Finally, the performance of the proposed numerical technique is evaluated by considering the effects of RVE size, node influence domain, degree of nonuniformity and fiber volume fraction separately.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge the support ofNationalNatural Science Foundation of China (NNSFC) through Grant No. 11702006 and the General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China through Grant No. KM201810005003.


  1. 1.
    Rocha, I.B.C.M., van der Meer, F.P., Sluys, L.J.: Efficient micromechanical analysis of fiber-reinforced composites subjected to cyclic loading through time homogenization and reduced-order modeling. Comput. Methods Appl. Mech. Eng. 345, 644–670 (2019)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Naghdinasab, M., Farrokhabadi, A., Madadi, H.: A numerical method to evaluate the material properties degradation in composite RVEs due to fiber-matrix debonding and induced matrix cracking. Finite Elem. Anal. Des. 146, 84–95 (2018)CrossRefGoogle Scholar
  3. 3.
    Melro, A.R., Camanho, P.P., Pinho, S.T.: Generation of random distribution of fibres in long-fibre reinforced composites. Compos. Sci. Technol. 68, 2092–2102 (2008)CrossRefGoogle Scholar
  4. 4.
    Beicha, D., Kanit, T., Brunet, Y., Imad, A., Moumen, A.El, Khelfaoui, Y.: Effective transverse elastic properties of unidirectional fiber reinforced composites. Mech. Mater. 102, 47–53 (2016)CrossRefGoogle Scholar
  5. 5.
    Tam, L., Wu, C.: Molecular mechanics of the moisture effect on epoxy/carbon nanotube nanocomposites. Nanomaterials 7, 324 (2017)CrossRefGoogle Scholar
  6. 6.
    Tam, L.ho, He, L., Wu, C.: Molecular dynamics study on the effect of salt environment on interfacial structure, stress, and adhesion of carbon fiber/epoxy interface. Compos. Interfaces 26, 431–447 (2019)CrossRefGoogle Scholar
  7. 7.
    Romanov, V., Lomov, S.V., Swolfs, Y., Orlova, S., Gorbatikh, L., Verpoest, I.: Statistical analysis of real and simulated fibre arrangements in unidirectional composites. Compos. Sci. Technol. 87, 126–134 (2013)CrossRefGoogle Scholar
  8. 8.
    Yang, L., Yan, Y., Ran, Z., Liu, Y.: A new method for generating random fibre distributions for fibre reinforced composites. Compos. Sci. Technol. 76, 14–20 (2013)CrossRefGoogle Scholar
  9. 9.
    Wongsto, A., Li, S.: Micromechanical FE analysis of UD fibre-reinforced composites with fibres distributed at random over the transverse cross-section. Compos. Part A Appl. Sci. Manuf. 36, 1246–1266 (2005)CrossRefGoogle Scholar
  10. 10.
    Ismail, Y., Yang, D., Ye, J.: Discrete element method for generating random fibre distributions in micromechanical models of fibre reinforced composite laminates. Compos. Part B Eng. 90, 485–492 (2016)CrossRefGoogle Scholar
  11. 11.
    Zhang, T., Yan, Y.: A comparison between random model and periodic model for fiber-reinforced composites based on a new method for generating fiber distributions. Polym. Compos. 38, 77–86 (2015)CrossRefGoogle Scholar
  12. 12.
    Dong, C.Y., Pan, E.: Boundary element analysis of nanoinhomogeneities of arbitrary shapes with surface and interface effects. Eng. Anal. Bound. Elem. 35, 996–1002 (2011)CrossRefzbMATHGoogle Scholar
  13. 13.
    Li, X., Zhang, S.: Meshless analysis and applications of a symmetric improved Galerkin boundary node method using the improved moving least-square approximation. Appl. Math. Model. 40, 2875–2896 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kardani, O., Nazem, M., Kardani, M., Sloan, S.: On the application of the maximum entropy meshfree method for elastoplastic geotechnical analysis. Comput. Geotech. 84, 68–77 (2017)CrossRefGoogle Scholar
  15. 15.
    Saucedo-Zendejo, F.R., Reséndiz-Flores, E.O.: A new approach for the numerical simulation of free surface incompressible flows using a meshfree method. Comput. Methods Appl. Mech. Eng. 324, 619–639 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wang, J.F., Zhang, W.: An equivalent continuum meshless approach for material nonlinear analysis of CNT-reinforced composites. Compos. Struct. 188, 116–125 (2018)CrossRefGoogle Scholar
  17. 17.
    Ramírez, L., Nogueira, X., Khelladi, S., Krimi, A., Colominas, I.: A very accurate Arbitrary Lagrangian–Eulerian meshless method for computational aeroacoustics. Comput. Methods Appl. Mech. Eng. 342, 116–141 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Yang, J., Potier-Ferry, M., Hu, H.: Solving the stationary Navier–Stokes equations by using Taylor meshless method. Eng. Anal. Bound. Elem. 98, 8–16 (2019)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ghehsareh, H.R., Raei, M., Zaghian, A.: Numerical simulation of a modified anomalous diffusion process with nonlinear source term by a local weak form meshless method. Eng. Anal. Bound. Elem. 98, 64–76 (2019)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Li, X., Dong, H.: The element-free Galerkin method for the nonlinear p-Laplacian equation. Comput. Math. Appl. 75, 2549–2560 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Zhang, T., Li, X.: A generalized element-free Galerkin method for Stokes problem. Comput. Math. Appl. 75, 3127–3138 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Liu, G.R., Zhao, X., Dai, K.Y., Zhong, Z.H., Li, G.Y., Han, X.: Static and free vibration analysis of laminated composite plates using the conforming radial point interpolation method. Compos. Sci. Technol. 68, 354–366 (2008)CrossRefGoogle Scholar
  23. 23.
    Ahmadi, I., Aghdam, M.M.: Micromechanics of fibrous composites subjected to combined shear and thermal loading using a truly meshless method. Comput. Mech. 46, 387–398 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Liew, K.M., Lei, Z.X., Yu, J.L., Zhang, L.W.: Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach. Comput. Methods Appl. Mech. Eng. 268, 1–17 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Yang, S.W., Budarapu, P.R., Mahapatra, D.R., Bordas, S.P.A., Zi, G., Rabczuk, T.: A meshless adaptive multiscale method for fracture. Comput. Mater. Sci. 96, 382–395 (2015)CrossRefGoogle Scholar
  26. 26.
    Wang, J.F., Zhang, L.W., Liew, K.M.: Multiscale simulation of mechanical properties and microstructure of CNT-reinforced cement-based composites. Comput. Methods Appl. Mech. Eng. 319, 393–413 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kang, J., Bolander, J.E.: Multiscale modeling of strain-hardening cementitious composites. Mech. Res. Commun. 78, 47–54 (2016)CrossRefGoogle Scholar
  28. 28.
    Elnekhaily, S.A., Talreja, R.: Damage initiation in unidirectional fiber composites with different degrees of nonuniform fiber distribution. Compos. Sci. Technol. 155, 22–32 (2018)CrossRefGoogle Scholar
  29. 29.
    Hojo, M., Mizuno, M., Hobbiebrunken, T., Adachi, T., Tanaka, M., Ha, S.K.: Effect of fiber array irregularities on microscopic interfacial normal stress states of transversely loaded UD-CFRP from viewpoint of failure initiation. Compos. Sci. Technol. 69, 1726–1734 (2009)CrossRefGoogle Scholar
  30. 30.
    Bulsara, V.N., Talreja, R., Qu, J.: Damage initiation under transverse loading of unidirectional composites with arbitrarily distributed fibers. Compos. Sci. Technol. 59, 673–682 (1999)CrossRefGoogle Scholar
  31. 31.
    Pyrz, R.: Correlation of microstructure variability and local stress field in two-phase materials. Mater. Sci. Eng. A. 177, 253–259 (1994)CrossRefGoogle Scholar
  32. 32.
    Wang, J.F., Zhang, L.W., Liew, K.M.: A multiscale modeling of CNT-reinforced cement composites. Comput. Methods Appl. Mech. Eng. 309, 411–433 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Wang, J.F., Cheng, Y.M.: A new complex variable meshless method for transient heat conduction problems. Chin. Phys. B. 21, 120206 (2012)CrossRefGoogle Scholar
  34. 34.
    Wang, J.F., Liew, K.M.: An accurate improved complex variable element-free method for numerical solutions of elastodynamic problems. Eng. Anal. Bound. Elem. 50, 304–312 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Li, X.L., Li, S.L.: On the stability of the moving least squares approximation and the element-free Galerkin method. Comput. Math. Appl. 72, 1515–1531 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Li, X.L.: Three-dimensional complex variable element-free Galerkin method. Appl. Math. Model. 63, 148–171 (2018)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Li, X.L., Dong, H.Y.: Analysis of the element-free Galerkin method for Signorini problems. Appl. Math. Comput. 346, 41–56 (2019)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Nonlinear Vibrations and Strength of Mechanical Structures, College of Mechanical EngineeringBeijing University of TechnologyBeijingChina

Personalised recommendations