Advertisement

Acta Mechanica

, Volume 230, Issue 6, pp 2249–2266 | Cite as

Analytical solutions of oscillating Couette–Poiseuille flows for the viscoelastic Oldroyd B fluid

  • Bole Ma
  • Yongqi WangEmail author
  • Anne Kikker
Original Paper
  • 34 Downloads

Abstract

This paper deals with the analytical investigation of oscillatory Couette–Poiseuille flows with regard to the viscoelastic Oldroyd B fluid, taking the inertial force into account. The fluid is confined by two infinite horizontal plates under the exertion of a periodic pressure gradient. The upper plate is fixed at rest, and the below plate oscillates in its own plane. The velocity distributions and the stress responses are analytically obtained and graphically presented. The oscillating flow behaviors of the Oldroyd B fluid and its two limiting cases, the Newtonian fluid and the upper-convected Maxwell fluid, are investigated and compared. The inertial, viscous, and elastic effects on the flow behaviors, stress responses, the relation between the shear stress and the shear rate, and the emerging resonance are extensively discussed by reference to the dimensionless parameters, i.e., Reynolds number, Deborah number, and the ratio of the relaxation time to the retardation time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Akers, L.C., Williams, M.C.: Oscillatory normal stresses in dilute polymer solutions. J. Chem. Phys. 51(9), 3834–3841 (1969)CrossRefGoogle Scholar
  2. 2.
    Ding, F., Giacomin, A.J., Bird, R.B., Kweon, C.-B.: Viscous dissipation with fluid inertia in oscillatory shear flow. J. Non-Newton. Fluid Mech. 86(3), 359–374 (1999)CrossRefzbMATHGoogle Scholar
  3. 3.
    Fetecau, C., Fetecau, C., Vieru, D.: On some helical flows of Oldroyd-B fluids. Acta Mech. 189(1–4), 53–63 (2007)CrossRefzbMATHGoogle Scholar
  4. 4.
    Fetecau, C., Awan, A.U., Fetecau, C.: Taylor–Couette flow of an Oldroyd-B fluid in a circular cylinder subject to a time-dependent rotation. Bull. Math. Soc. Sci. Math. Roum. 52, 117–128 (2009)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Fetecau, C., Fetecau, C., Imran, M.: Axial Couette flow of an Oldroyd-B fluid due to a time-dependent shear stress. Math. Rep. 11(61), 145–154 (2009)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Fetecau, C., Fetecau, C.: The first problem of Stokes for an Oldroyd-B fluid. Int. J. Non-Linear Mech. 38(10), 1539–1544 (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Fetecau, C., Prasad, S.C.: A note on the flow induced by a constantly accelerating edge in an Oldroyd-B fluid. Int. J. Math. Math. Sci. 2005(16), 2677–2688 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fetecau, C., Prasad, S.C., Rajagopal, K.R.: A note on the flow induced by a constantly accelerating plate in an Oldroyd-B fluid. Appl. Math. Model. 31(4), 647–654 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Giesekus, H.: Phänomenologische Rheologie: Einführung. Springer, Berlin (2011)zbMATHGoogle Scholar
  10. 10.
    Hayat, T., Siddiqui, A., Asghar, S.: Some simple flows of an Oldroyd-B fluid. Int. J. Eng. Sci. 39(2), 135–147 (2001)CrossRefGoogle Scholar
  11. 11.
    Jamil, M., Khan, N.A., Zafar, A.A.: Translational flows of an Oldroyd-B fluid with fractional derivatives. Comput. Math. Appl. 62(3), 1540–1553 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Oldroyd, J.G.: On the formulation of rheological equations of state. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 200, 523–541 (1950)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Phan-Thien, N., Newberry, M., Tanner, R.I.: Non-linear oscillatory flow of a soft solid-like viscoelastic material. J. Non-Newton. Fluid Mech. 92(1), 67–80 (2000)CrossRefzbMATHGoogle Scholar
  14. 14.
    Rajagopal, K.: A note on unsteady unidirectional flows of a non-Newtonian fluid. Int. J. Non-Linear Mech. 17(5–6), 369–373 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Saengow, C., Giacomin, A.J., Kolitawong, C.: Exact analytical solution for large-amplitude oscillatory shear flow. Macromol. Theory Simul. 24(4), 352–392 (2015)CrossRefGoogle Scholar
  16. 16.
    Saengow, C., Giacomin, A.J., Kolitawong, C.: Exact analytical solution for large amplitude oscillatory shear flow from Oldroyd 8-constant framework: shear stress. Phys. Fluids 29(4), 043101 (2017)CrossRefGoogle Scholar
  17. 17.
    Saengow, C., Giacomin, A.J.: Normal stress differences from Oldroyd 8-constant framework: exact analytical solution for large-amplitude oscillatory shear flow. Phys. Fluids 29(12), 121601 (2017)CrossRefGoogle Scholar
  18. 18.
    Schrag, J.L.: Deviation of velocity gradient profiles from the ‘gap loading’ and ‘surface loading’ limits in dynamic simple shear experiments. Trans. Soc. Rheol. 21(3), 399–413 (1977)CrossRefzbMATHGoogle Scholar
  19. 19.
    Tan, W., Masuoka, T.: Stoke’s first problem for an Oldroyd-B fluid in a porous half space. Phys. Fluids 17(2), 023101 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Tanner, R.I.: Note on the Rayleigh problem for a visco-elastic fluid. Z. Angew. Math. Phys. ZAMP 13(6), 573–580 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Waters, N.D., King, M.J.: The unsteady flow of an elastico-viscous liquid in a straight pipe of circular cross section. J. Phys. D Appl. Phys. 4(2), 204–211 (1971)CrossRefGoogle Scholar
  22. 22.
    Wenchang, T., Wenxiao, P., Mingyu, X.: A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates. Int. J. Non-Linear Mech. 38(5), 645–650 (2003)CrossRefzbMATHGoogle Scholar
  23. 23.
    Williams, M.C., Bird, R.B.: Three-constant Oldroyd model for viscoelastic fluids. Phys. Fluids 5(9), 1126–1128 (1962)CrossRefGoogle Scholar
  24. 24.
    Wood, W.P.: Transient viscoelastic helical flows in pipes of circular and annular cross- section. J. Non-Newton. Fluid Mech. 100(1), 115–126 (2001)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chair of Fluid Dynamics, Department of Mechanical EngineeringTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations