Advertisement

Acta Mechanica

, Volume 230, Issue 6, pp 1919–1980 | Cite as

Particle-scale computational approaches to model dry and saturated granular flows of non-Brownian, non-cohesive, and non-spherical rigid bodies

  • Anthony WachsEmail author
Review and Perspective in Mechanics
  • 84 Downloads

Abstract

We discuss methods to compute the flow of non-Brownian, non-cohesive, and non-spherical rigid bodies immersed in a single homogeneous fluid. We address both the case of negligible effect of the surrounding fluid corresponding to dry granular flows in which the dynamics of rigid bodies is controlled by gravity and collisions only, and the case of non-negligible effect of the surrounding fluid in which rigid bodies not only exchange momentum by collisions but also by two-way coupling with the surrounding fluid flow. We review the common computational methods to compute rigid body collisions and the two-way interaction of rigid bodies with the surrounding fluid flow. We specifically discuss the extension or applicability of these methods to non-spherical rigid bodies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics. Springer, Berlin (2008)zbMATHGoogle Scholar
  2. 2.
    Ai, J., Chen, J., Rotter, J., Ooi, J.: Assessment of rolling resistance models in discrete element simulations. Powder Technol. 206(3), 269–282 (2011)Google Scholar
  3. 3.
    Aidun, C.K., Clausen, J.R.: Lattice-Boltzmann method for complex flows. Ann. Rev. Fluid Mech. 42, 439–472 (2010)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Akiki, G., Balachandar, S.: Immersed boundary method with non-uniform distribution of Lagrangian markers for a non-uniform Eulerian mesh. J. Comput. Phys. 307, 34–59 (2016)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Alam, M., Luding, S.: Rheology of bidisperse granular mixtures via event-driven simulations. J. Fluid Mech. 476, 69–103 (2003)zbMATHGoogle Scholar
  6. 6.
    Alonso-Marroquin, F., Wang, Y.: An efficient algorithm for granular dynamics simulations with complex-shaped objects. Granul. Matter 11(5), 317–329 (2009)zbMATHGoogle Scholar
  7. 7.
    Apte, S.V., Martin, M., Patankar, N.A.: A numerical method for fully resolved simulation (FRS) of rigid particle-flow interactions in complex flows. J. Comput. Phys. 228(8), 2712–2738 (2009)zbMATHGoogle Scholar
  8. 8.
    Ayala, D., Brunet, P., Juan, R., Navazo, I.: Object representation by means of nonminimal division quadtrees and octrees. ACM Trans. Graph. (TOG) 4(1), 41–59 (1985)Google Scholar
  9. 9.
    Azéma, E., Radjai, F., Dubois, F.: Packings of irregular polyhedral particles: Strength, structure, and effects of angularity. Phys. Rev. E 87(6), 062203 (2013)Google Scholar
  10. 10.
    Baraff, D.: Analytical methods for dynamic simulation of non-penetrating rigid bodies. In: ACM SIGGRAPH Computer Graphics, vol. 23, pp. 223–232. ACM (1989)Google Scholar
  11. 11.
    Baraff, D.: Non-penetrating rigid body simulation. In: State of the Art Reports: Proceedings of Eurographics 93 (Sept 1993). Eurographics Association, Barcelona (1993)Google Scholar
  12. 12.
    Barr, A.H.: Superquadrics and angle-preserving transformations. IEEE Comput. Graph. Appl. 1(1), 11–23 (1981)MathSciNetGoogle Scholar
  13. 13.
    Bartuschat, D., Rüde, U.: A scalable multiphysics algorithm for massively parallel direct numerical simulations of electrophoretic motion. J. Comput. Sci. 27, 147–167 (2018)Google Scholar
  14. 14.
    Bathurst, R.J., Rothenburg, L.: Observations on stress-force-fabric relationships in idealized granular materials. Mech. Mater. 9(1), 65–80 (1990)Google Scholar
  15. 15.
    Beetstra, R., Van der Hoef, M., Kuipers, J.: Drag force of intermediate Reynolds number flow past mono-and bidisperse arrays of spheres. AIChE J. 53(2), 489–501 (2007)Google Scholar
  16. 16.
    Bender, J., Erleben, K., Trinkle, J.: Interactive simulation of rigid body dynamics in computer graphics. In: Computer Graphics Forum, vol. 33, pp. 246–270. Wiley Online Library (2014)Google Scholar
  17. 17.
    Bossis, G., Brady, J.F.: Dynamic simulation of sheared suspensions. I. General method. J. Chem. Phys. 80(10), 5141–5154 (1984)Google Scholar
  18. 18.
    Bouzidi, M., Firdaouss, M., Lallemand, P.: Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 13(11), 3452–3459 (2001)zbMATHGoogle Scholar
  19. 19.
    Brady, J., Bossis, G.: Stokesian dynamics. Ann. Rev. Fluid Mech. 20, 111–157 (1988)Google Scholar
  20. 20.
    Breugem, W.: A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. J. Comput. Phys. 231(13), 4469–4498 (2012)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Calhoun, D., LeVeque, R.J.: A Cartesian grid finite-volume method for the advection-diffusion equation in irregular geometries. J. Comput. Phys. 157(1), 143–180 (2000)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Chang, J.-W., Wang, W., Kim, M.-S.: Efficient collision detection using a dual OBB-sphere bounding volume hierarchy. Comput. Aided Des. 42(1), 50–57 (2010)Google Scholar
  23. 23.
    Chesshire, G., Henshaw, W.D.: Composite overlapping meshes for the solution of partial differential equations. J. Comput. Phys. 90(1), 1–64 (1990)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Chesshire, G., Henshaw, W.D.: A scheme for conservative interpolation on overlapping grids. SIAM J. Sci. Comput. 15(4), 819–845 (1994)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Chung, M.-H.: An adaptive Cartesian cut-cell/level-set method to simulate incompressible two-phase flows with embedded moving solid boundaries. Comput. Fluids 71, 469–486 (2013)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Cleary, P.: Large scale industrial DEM modelling. Eng. Comput. 21(2), 169–204 (2004)zbMATHGoogle Scholar
  27. 27.
    Cleary, P.: DEM prediction of industrial and geophysical particle flows. Particuology 8, 106–118 (2010)Google Scholar
  28. 28.
    Cleary, P., Sawley, M.: DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Appl. Math. Model. 26(2), 89–111 (2002)zbMATHGoogle Scholar
  29. 29.
    Cleary, P.W., Stokes, N., Hurley, J.: Efficient collision detection for three dimensional super-ellipsoidal particles. In: Proceedings of 8th International Computational Techniques and Applications Conference CTAC97, Adelaide (1997)Google Scholar
  30. 30.
    Climent, E., Maxey, M.: Numerical simulations of random suspensions at finite Reynolds numbers. Int. J. Multiph. Flow 29(4), 579–601 (2003)zbMATHGoogle Scholar
  31. 31.
    Cottle, R.W.: Linear complementarity problem. In: Encyclopedia of Optimization, pp. 1873–1878. Springer (2008)Google Scholar
  32. 32.
    Coumans, E.: Bullet physics simulation. In: ACM SIGGRAPH 2015 Courses, SIGGRAPH ’15. ACM (2015)Google Scholar
  33. 33.
    Cundall, P.: Formulation of a three-dimensional distinct element model—part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25(3), 107–116 (1988)Google Scholar
  34. 34.
    Cundall, P., Strack, O.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)Google Scholar
  35. 35.
    D’Avino, G., Hulsen, M.: A comparison between a collocation and weak implementation of the rigid-body motion constraint on a particle surface. Int. J. Numer. Methods Fluids 64(9), 1014–1040 (2010)zbMATHGoogle Scholar
  36. 36.
    Deen, N., Kriebitzsch, S., van der Hoef, M., Kuipers, J.: Direct numerical simulation of flow and heat transfer in dense fluid-particle systems. Chem. Eng. Sci. 81, 329–344 (2012)Google Scholar
  37. 37.
    Deen, N., Kuipers, J.: Direct numerical simulation of fluid flow and mass transfer in dense fluid-particle systems. Ind. Eng. Chem. Res. 52(33), 11266–11274 (2013)Google Scholar
  38. 38.
    Deen, N., van Sint Annaland, M., Kuipers, J.: Direct numerical simulation of complex multi-fluid flows using a combined front tracking and immersed boundary method. Chem. Eng. Sci. 64(9), 2186–2201 (2009)Google Scholar
  39. 39.
    Diaz-Goano, C., Minev, P., Nandakumar, K.: A fictitious domain/finite element method for particulate flows. J. Comput. Phys. 192(1), 105–123 (2003)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Diebel, J.: Representing attitude: Euler angles, unit quaternions, and rotation vectors. Technical report, Stanford University (2006)Google Scholar
  41. 41.
    Donea, J., Giuliani, S., Halleux, J.-P.: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 33(1–3), 689–723 (1982)zbMATHGoogle Scholar
  42. 42.
    Donea, J., Huerta, A., Ponthot, J.P., Rodriguez-Ferran, A.: Arbitrary Lagrangian-Eulerian methods. In: Stein, E., de Borst, R., Hughes, T. (eds.) Encyclopedia of Computational Mechanics: Fundamentals, vol. 1, pp. 1–24. Wiley, New York (2004)Google Scholar
  43. 43.
    Donev, A., Torquato, S., Stillinger, F.H.: Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Algorithmic details. J. Comput. Phys. 202(2), 737–764 (2005)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Donev, A., Torquato, S., Stillinger, F.H.: Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Applications to ellipses and ellipsoids. J. Comput. Phys. 202(2), 765–793 (2005)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Dong, K., Wang, C., Yu, A.: A novel method based on orientation discretization for discrete element modeling of non-spherical particles. Chem. Eng. Sci. 126, 500–516 (2015)Google Scholar
  46. 46.
    Dorai, F., Teixeira, C.M., Rolland, M., Climent, E., Marcoux, M., Wachs, A.: Fully resolved simulations of the flow through a packed bed of cylinders: effect of size distribution. Chem. Eng. Sci. 129, 180–192 (2015)Google Scholar
  47. 47.
    Dubois, F., Acary, V., Jean, M.: The contact dynamics method: a nonsmooth story. C. R. Méc. 346(3), 247–262 (2018)Google Scholar
  48. 48.
    Dviugys, A., Peters, B.: An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers. Granul. Matter 3(4), 231–266 (2001)Google Scholar
  49. 49.
    Eitel-Amor, G., Meinke, M., Schröder, W.: A lattice-Boltzmann method with hierarchically refined meshes. Comput. Fluids 75, 127–139 (2013)zbMATHGoogle Scholar
  50. 50.
    Elskamp, F., Kruggel-Emden, H., Hennig, M., Teipel, U.: A strategy to determine DEM parameters for spherical and non-spherical particles. Granul. Matter 19(3), 46 (2017)Google Scholar
  51. 51.
    Esteghamatian, A., Hammouti, A., Lance, M., Wachs, A.: Particle resolved simulations of liquid/solid and gas/solid fluidized beds. Phys. Fluids 29(3), 033302 (2017)Google Scholar
  52. 52.
    Estrada, N., Taboada, A., Radjai, F.: Shear strength and force transmission in granular media with rolling resistance. Phys. Rev. E 78(2), 021301 (2008)Google Scholar
  53. 53.
    Evans, D.: On the representation of orientation space. Mol. Phys. 34(2), 317–325 (1977)MathSciNetGoogle Scholar
  54. 54.
    Evans, D., Murad, S.: Singularity free algorithm for molecular dynamics simulation of rigid polyatomics. Mol. Phys. 34(2), 327–331 (1977)Google Scholar
  55. 55.
    Fadlun, E.A., Verzicco, R., Orlandi, P., Mohd-Yusof, J.: Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161(1), 35–60 (2000)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Fakhari, A., Lee, T.: Finite-difference lattice Boltzmann method with a block-structured adaptive-mesh-refinement technique. Phys. Rev. E 89(3), 033310 (2014)Google Scholar
  57. 57.
    Feng, J., Hu, H., Joseph, D.: Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 1. Sedimentation. J. Fluid Mech. 261, 95–134 (1994)zbMATHGoogle Scholar
  58. 58.
    Feng, J., Hu, H., Joseph, D.: Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows. J. Fluid Mech. 277(271), 271–301 (1994)zbMATHGoogle Scholar
  59. 59.
    Feng, Z., Michaelides, E.: Heat transfer in particulate flows with direct numerical simulation (DNS). Int. J. Heat Mass Transf. 52(3–4), 777–786 (2009)zbMATHGoogle Scholar
  60. 60.
    Feng, Z., Michaelides, E.: Robust treatment of no-slip boundary condition and velocity updating for the lattice-Boltzmann simulation of particulate flows. Comput. Fluids 38(2), 370–381 (2009)zbMATHGoogle Scholar
  61. 61.
    Ferris, M., Pang, J.-S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39(4), 669–713 (1997)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Fogelson, A., Peskin, C.: A fast numerical method for solving the three-dimensional Stokes’ equations in the presence of suspended particles. J. Comput. Phys. 79(1), 50–69 (1988)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Form, W., Ito, N., Kohring, G.A.: Vectorized and parallelized algorithms for multi-million particle md-simulation. Int. J. Mod. Phys. C 4(06), 1085–1101 (1993)Google Scholar
  64. 64.
    Fraige, F., Langston, P., Chen, G.: Distinct element modelling of cubic particle packing and flow. Powder Technol. 186(3), 224–240 (2008)Google Scholar
  65. 65.
    Fukumoto, Y., Sakaguchi, H., Murakami, A.: The role of rolling friction in granular packing. Granul. Matter 15(2), 175–182 (2013)Google Scholar
  66. 66.
    Gallier, S., Lemaire, E., Lobry, L., Peters, F.: A fictitious domain approach for the simulation of dense suspensions. J. Comput. Phys. 256, 367–387 (2014)MathSciNetzbMATHGoogle Scholar
  67. 67.
    Geng, F., Yuan, Z., Yan, Y., Luo, D., Wang, H., Li, B., Xu, D.: Numerical simulation on mixing kinetics of slender particles in a rotary dryer. Powder Technol. 193(1), 50–58 (2009)Google Scholar
  68. 68.
    Ghias, R., Mittal, R., Lund, T.: A non-body conformal grid method for simulation of compressible flows with complex immersed boundaries. In: 42nd AIAA Aerospace Sciences Meeting and Exhibit, pp. 80 (2004)Google Scholar
  69. 69.
    Gibou, F., Fedkiw, R., Cheng, L.-T., Kang, M.: A second-order-accurate symmetric discretization of the Poisson equation on irregular domains. J. Comput. Phys. 176(1), 205–227 (2002)MathSciNetzbMATHGoogle Scholar
  70. 70.
    Gilbert, E., Johnson, D., Keerthi, S.: A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE J. Robot. Autom. 4(2), 193–203 (1988)Google Scholar
  71. 71.
    Glowinski, R., Pan, T., Hesla, T., Joseph, D.: A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiph. Flow 25(5), 755–794 (1999)MathSciNetzbMATHGoogle Scholar
  72. 72.
    Glowinski, R., Pan, T., Hesla, T., Joseph, D., Periaux, J.: A distributed Lagrange multiplier/fictitious domain method for flows around moving rigid bodies: application to particulate flow. Int. J. Numer. Methods Fluids 30(8), 1043–1066 (1999)zbMATHGoogle Scholar
  73. 73.
    Glowinski, R., Pan, T., Hesla, T., Joseph, D., Periaux, J.: A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow. Comput. Methods Appl. Mech. Eng. 184(2–4), 241–267 (2000)MathSciNetzbMATHGoogle Scholar
  74. 74.
    Glowinski, R., Pan, T., Hesla, T., Joseph, D., Periaux, J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169(2), 363–426 (2001)MathSciNetzbMATHGoogle Scholar
  75. 75.
    Glowinski, R., Wachs, A.: On the numerical simulation of viscoplastic fluid flow. In: Glowinski, R., Xu, J. (eds.) Handbook of Numerical Analysis Volume XVI: Numerical Methods for Non-Newtonian Fluids, pp. 483–718. Elsevier, Amsterdam (2011)Google Scholar
  76. 76.
    Goldstein, D., Handler, R., Sirovich, L.: Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 105(2), 354–366 (1993)zbMATHGoogle Scholar
  77. 77.
    Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: a hierarchical structure for rapid interference detection. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 171–180 (1996)Google Scholar
  78. 78.
    Govender, N., Wilke, D., Shalk, K.: Collision detection of convex polyhedra on the NVIDIA GPU architecture for the discrete element method. Appl. Math. Comput. 267, 810–829 (2015)MathSciNetzbMATHGoogle Scholar
  79. 79.
    Griffith, B.E., Hornung, R.D., McQueen, D.M., Peskin, C.S.: An adaptive, formally second order accurate version of the immersed boundary method. J. Comput. Phys. 223(1), 10–49 (2007)MathSciNetzbMATHGoogle Scholar
  80. 80.
    Guendelman, E., Bridson, R., Fedkiw, R.: Nonconvex rigid bodies with stacking. In: ACM Transactions on Graphics (TOG), vol. 22, pp. 871–878. ACM (2003)Google Scholar
  81. 81.
    Guo, Y., Wassgren, C., Ketterhagen, W., Hancock, B., James, B., Curtis, J.: A numerical study of granular shear flows of rod-like particles using the discrete element method. J. Fluid Mech. 713, 1–26 (2012)MathSciNetzbMATHGoogle Scholar
  82. 82.
    Haeri, S., Shrimpton, J.: On the application of immersed boundary, fictitious domain and body-conformal mesh methods to many particle multiphase flows. Int. J. Multiph. Flow 40, 38–55 (2012)Google Scholar
  83. 83.
    Haeri, S., Shrimpton, J.: A new implicit fictitious domain method for the simulation of flow in complex geometries with heat transfer. J. Comput. Phys. 237, 21–45 (2013)MathSciNetzbMATHGoogle Scholar
  84. 84.
    Hamilton, S.: On quaternions. Proc. R. Ir. Acad. 3, 1–16 (1847)Google Scholar
  85. 85.
    Hamilton, S.: Lectures on quaternions. Hodges and Smith (1853)Google Scholar
  86. 86.
    Hamilton, S.: Elements of Quaternions. Green, & co., Longmans (1866)Google Scholar
  87. 87.
    Hart, R., Cundall, P., Lemos, J.: Formulation of a three-dimensional distinct element model—part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25(3), 117–125 (1988)Google Scholar
  88. 88.
    Hartmann, D., Meinke, M., Schröder, W.: A strictly conservative Cartesian cut-cell method for compressible viscous flows on adaptive grids. Comput. Methods Appl. Mech. Eng. 200(9–12), 1038–1052 (2011)MathSciNetzbMATHGoogle Scholar
  89. 89.
    Henshaw, W.D.: Ogen: an overlapping grid generator for overture. Technical report, Department of Mathematical Sciences. Rensselaer Polytechnic Institute (2015)Google Scholar
  90. 90.
    Henshaw, W.D., Schwendeman, D.W.: Parallel computation of three-dimensional flows using overlapping grids with adaptive mesh refinement. J. Comput. Phys. 227(16), 7469–7502 (2008)MathSciNetzbMATHGoogle Scholar
  91. 91.
    Hill, R., Koch, D., Ladd, A.: Moderate-Reynolds-number flows in ordered and random arrays of spheres. J. Fluid Mech. 448(2), 243–278 (2001)MathSciNetzbMATHGoogle Scholar
  92. 92.
    Hill, R., Koch, D., Ladd, A.: The first effects of fluid inertia on flows in ordered and random arrays of spheres. J. Fluid Mech. 448(2), 213–241 (2001)MathSciNetzbMATHGoogle Scholar
  93. 93.
    Höfler, K., Schwarzer, S.: Navier–Stokes simulation with constraint forces: finite-difference method for particle-laden flows and complex geometries. Phys. Rev. E 61, 7146–7160 (2000)Google Scholar
  94. 94.
    Hogue, C.: Shape representation and contact detection for discrete element simulations of arbitrary geometries. Eng. Comput. 15(3), 374–390 (1998)zbMATHGoogle Scholar
  95. 95.
    Hogue, C., Newland, D.: Efficient computer simulation of moving granular particles. Powder Technol. 78(1), 51–66 (1994)Google Scholar
  96. 96.
    Hölzer, A., Sommerfeld, M.: Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles. Comput. Fluids 38(3), 572–589 (2009)Google Scholar
  97. 97.
    Hu, H.: Direct simulation of flows of solid–liquid mixtures. Int. J. Multiph. Flow 22(2), 335–352 (1996)MathSciNetzbMATHGoogle Scholar
  98. 98.
    Hu, H., Patankar, N., Zhu, M.: Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian–Eulerian technique. J. Comput. Phys. 169(2), 427–462 (2001)MathSciNetzbMATHGoogle Scholar
  99. 99.
    Hu, H.H., Joseph, D.D., Crochet, M.J.: Direct simulation of fluid particle motions. Theor. Comput. Fluid Dyn. 3(5), 285–306 (1992)zbMATHGoogle Scholar
  100. 100.
    Hughes, T.J.R., Franca, L.P., Mallet, M.: A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advective-diffusive systems. Comput. Methods Appl. Mech. Eng. 63(1), 97–112 (1987)MathSciNetzbMATHGoogle Scholar
  101. 101.
    Hughes, T.J.R., Liu, W.K., Zimmermann, T.K.: Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29(3), 329–349 (1981)MathSciNetzbMATHGoogle Scholar
  102. 102.
    Iglberger, K., Rüde, U.: Large-scale rigid body simulations. Multibody Syst. Dyn. 25(1), 81–95 (2011)MathSciNetzbMATHGoogle Scholar
  103. 103.
    Iwashita, K., Oda, M.: Mechanics of Granular Materials: An Introduction. CRC Press, Boca Raton (1999)Google Scholar
  104. 104.
    Jean, M.: The non-smooth contact dynamics method. Comput. Methods Appl. Mech. Eng. 177(3–4), 235–257 (1999)MathSciNetzbMATHGoogle Scholar
  105. 105.
    Jiménez, J.J., Segura, R.J.: Collision detection between complex polyhedra. Comput. Graph. 32(4), 402–411 (2008)Google Scholar
  106. 106.
    Johansen, H., Colella, P.: A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains. J. Comput. Phys. 147(1), 60–85 (1998)MathSciNetzbMATHGoogle Scholar
  107. 107.
    Johnson, A.A., Tezduyar, T.E.: Simulation of multiple spheres falling in a liquid-filled tube. Comput. Methods Appl. Mech. Eng. 134(3–4), 351–373 (1996)MathSciNetzbMATHGoogle Scholar
  108. 108.
    Johnson, A.A., Tezduyar, T.E.: Advanced mesh generation and update methods for 3D flow simulations. Comput. Mech. 23(2), 130–143 (1999)zbMATHGoogle Scholar
  109. 109.
    Johnson, M.: A novel Cartesian CFD cut cell approach. Comput. Fluids 79, 105–119 (2013)MathSciNetzbMATHGoogle Scholar
  110. 110.
    Johnson, S., Williams, J., Cook, B.: Quaternion-based rigid body rotation integration algorithms for use in particle methods. Int. J. Numer. Methods Eng. 74(8), 1303–1313 (2008)MathSciNetzbMATHGoogle Scholar
  111. 111.
    Johnson, S., Williams, J., Cook, B.: On the application of quaternion-based approaches in discrete element methods. Eng. Comput. 26, 610–620 (2009)Google Scholar
  112. 112.
    Kang, S., Iaccarino, G., Ham, F.: DNS of buoyancy-dominated turbulent flows on a bluff body using the immersed boundary method. J. Comput. Phys. 228(9), 3189–3208 (2009)zbMATHGoogle Scholar
  113. 113.
    Kang, S., Iaccarino, G., Moin, P.: Accurate immersed-boundary reconstructions for viscous flow simulations. AIAA J. 47(7), 1750–1760 (2009)Google Scholar
  114. 114.
    Kawamoto, R., Andò, E., Viggiani, G., Andrade, J.: All you need is shape: predicting shear banding in sand with LS-DEM. J. Mech. Phys. Solids 111, 375–392 (2018)Google Scholar
  115. 115.
    Kempe, T., Fröhlich, J.: An improved immersed boundary method with direct forcing for the simulation of particle laden flows. J. Comput. Phys. 231(9), 3663–3684 (2012)MathSciNetzbMATHGoogle Scholar
  116. 116.
    Kidanemariam, A., Uhlmann, M.: Interface-resolved direct numerical simulation of the erosion of a sediment bed sheared by laminar channel flow. Int. J. Multiph. Flow 67, 174–188 (2014)Google Scholar
  117. 117.
    Kim, J., Kim, D., Choi, H.: An immersed-boundary finite-volume method for simulations of flow in complex geometries. J. Comput. Phys. 171(1), 132–150 (2001)MathSciNetzbMATHGoogle Scholar
  118. 118.
    Klosowski, J.T., Held, M., Mitchell, J.S.B., Sowizral, H., Zikan, K.: Efficient collision detection using bounding volume hierarchies of k-DOPs. IEEE Trans. Vis. Comput. Graph. 1, 21–36 (1998)Google Scholar
  119. 119.
    Koblitz, A., Lovett, S., Nikiforakis, N., Henshaw, W.: Direct numerical simulation of particulate flows with an overset grid method. J. Comput. Phys. 343, 414–431 (2017)MathSciNetzbMATHGoogle Scholar
  120. 120.
    Kodam, M., Bharadwaj, R., Curtis, J., Hancock, B., Wassgren, C.: Cylindrical object contact detection for use in discrete element method simulations. Part I–contact detection algorithms. Chem. Eng. Sci. 65(22), 5852–5862 (2010)Google Scholar
  121. 121.
    Kodam, M., Bharadwaj, R., Curtis, J., Hancock, B., Wassgren, C.: Cylindrical object contact detection for use in discrete element method simulations. Part II–experimental validation. Chem. Eng. Sci. 65(22), 5863–5871 (2010)Google Scholar
  122. 122.
    Kohring, G.: Computer simulations of sintering via granular dynamics. Phys. A Stat. Mech. Appl. 195(1–2), 1–11 (1993)Google Scholar
  123. 123.
    Kremmer, M., Favier, J.F.: Calculating rotational motion in discrete element modelling of arbitrary shaped model objects. Eng. Comput. 17(6), 703–714 (2000)zbMATHGoogle Scholar
  124. 124.
    Kriebitzsch, M., Van der Hoef, S.H.L., Kuipers, J.: Fully resolved simulation of a gas-fluidized bed: a critical test of DEM models. Chem. Eng. Sci. 91, 1–4 (2013)Google Scholar
  125. 125.
    Kruggel-Emden, H., Rickelt, S., Wirtz, S., Scherer, V.: A study on the validity of the multi-sphere discrete element method. Powder Technol. 188(2), 153–165 (2008)Google Scholar
  126. 126.
    Kruggel-Emden, H., Sturm, M., Wirtz, S., Scherer, V.: Selection of an appropriate time integration scheme for the discrete element method (DEM). Comput. Chem. Eng. 32(10), 2263–2279 (2008)Google Scholar
  127. 127.
    Kruggel-Emden, H., Wirtz, S., Scherer, V.: A study on tangential force laws applicable to the discrete element method (DEM) for materials with viscoelastic or plastic behavior. Chem. Eng. Sci. 63(6), 1523–1541 (2008)Google Scholar
  128. 128.
    Kuipers, J.: Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality. Princeton Univ Pr, Princeton (2002)zbMATHGoogle Scholar
  129. 129.
    Ladd, A.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271(1), 311–339 (1994)MathSciNetzbMATHGoogle Scholar
  130. 130.
    Ladd, A.: Sedimentation of homogeneous suspensions of non-Brownian spheres. Phys. Fluids 9, 491–499 (1997)Google Scholar
  131. 131.
    Ladd, A., Verberg, R.: Lattice-Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 104(5), 1191–1251 (2001)MathSciNetzbMATHGoogle Scholar
  132. 132.
    Lai, M.-C., Peskin, C.S.: An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J. Comput. Phys. 160(2), 705–719 (2000)MathSciNetzbMATHGoogle Scholar
  133. 133.
    Langston, P., Al-Awamleh, M., Fraige, F., Asmar, B.: Distinct element modelling of non-spherical frictionless particle flow. Chem. Eng. Sci. 59(2), 425–435 (2004)Google Scholar
  134. 134.
    Langston, P., Tuzun, U., Heyes, D.: Continuous potential discrete particle simulations of stress and velocity fields in hoppers: transition from fluid to granular flow. Chem. Eng. Sci. 49(8), 1259–1275 (1994)Google Scholar
  135. 135.
    Larsson, T., Akenine-Möller, T.: A dynamic bounding volume hierarchy for generalized collision detection. Comput. Graph. 30(3), 450–459 (2006)Google Scholar
  136. 136.
    Lee, C.: Stability characteristics of the virtual boundary method in three-dimensional applications. J. Comput. Phys. 184(2), 559–591 (2003)zbMATHGoogle Scholar
  137. 137.
    Lee, L., LeVeque, R.J.: An immersed interface method for incompressible Navier–Stokes equations. SIAM J. Sci. Comput. 25(3), 832–856 (2003)MathSciNetzbMATHGoogle Scholar
  138. 138.
    Leveque, R.J., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31(4), 1019–1044 (1994)MathSciNetzbMATHGoogle Scholar
  139. 139.
    Li, J., Langston, P., Webb, C., Dyakowski, T.: Flow of sphero-disc particles in rectangular hoppers-a DEM and experimental comparison in 3D. Chem. Eng. Sci. 59(24), 5917–5929 (2004)Google Scholar
  140. 140.
    Lin, X., Ng, T.: A three-dimensional discrete element model using arrays of ellipsoids. Geotechnique 47(2), 319–329 (1997)Google Scholar
  141. 141.
    Lin, X., Ng, T.-T.: Contact detection algorithms for three-dimensional ellipsoids in discrete element modelling. Int. J. Numer. Anal. Methods Geomech. 19(9), 653–659 (1995)zbMATHGoogle Scholar
  142. 142.
    Lindemann, P.: The Gilbert–Johnson–Keerthi distance algorithm. Technical report, University of Munich, Germany (2009)Google Scholar
  143. 143.
    Lomholt, S., Stenum, B., Maxey, M.: Experimental verification of the force coupling method for particulate flows. Int. J. Multiph. Flow 28(2), 225–246 (2002)zbMATHGoogle Scholar
  144. 144.
    Lötstedt, P.: Coulomb friction in two-dimensional rigid body systems. ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech. 61(12), 605–615 (1981)MathSciNetGoogle Scholar
  145. 145.
    Lötstedt, P.: Mechanical systems of rigid bodies subject to unilateral constraints. SIAM J. Appl. Math. 42(2), 281–296 (1982)MathSciNetGoogle Scholar
  146. 146.
    Lötstedt, P.: Numerical simulation of time-dependent contact and friction problems in rigid body mechanics. SIAM J. Sci. Stat. Comput. 5(2), 370–393 (1984)MathSciNetzbMATHGoogle Scholar
  147. 147.
    Lu, G., Third, J., Müller, C.: Critical assessment of two approaches for evaluating contacts between super-quadric shaped particles in DEM simulations. Chem. Eng. Sci. 78, 226–235 (2012)Google Scholar
  148. 148.
    Lu, G., Third, J., Müller, C.: Discrete element models for non-spherical particle systems: from theoretical developments to applications. Chem. Eng. Sci. 127, 425–465 (2015)Google Scholar
  149. 149.
    Lu, G., Third, J., Müller, C.: The parameters governing the coefficient of dispersion of cubes in rotating cylinders. Granul. Matter 19(1), 12 (2017)Google Scholar
  150. 150.
    Lu, J., Das, S., Peters, E., Kuipers, J.: Direct numerical simulation of fluid flow and mass transfer in dense fluid-particle systems with surface reactions. Chem. Eng. Sci. 176, 1–18 (2018)Google Scholar
  151. 151.
    Ludewig, F., Vandewalle, N.: Strong interlocking of nonconvex particles in random packings. Phys. Rev. E 85(5), 051307 (2012)Google Scholar
  152. 152.
    Luding, S., Clément, E., Blumen, A., Rajchenbach, J., Duran, J.: Anomalous energy dissipation in molecular-dynamics simulations of grains: the "detachment" effect. Phys. Rev. E 50(5), 4113 (1994)Google Scholar
  153. 153.
    Luo, H., Dai, H., Ferreira de Sousa, P.J.S.A., Yin, B.: On the numerical oscillation of the direct-forcing immersed-boundary method for moving boundaries. Comput. Fluids 56, 61–76 (2012)MathSciNetzbMATHGoogle Scholar
  154. 154.
    Luo, K., Wang, Z., Fan, J., Cen, K.: Full-scale solutions to particle-laden flows: multidirect forcing and immersed boundary method. Phys. Rev. E 76(6), 066709 (2007)Google Scholar
  155. 155.
    Maitri, R.V., Das, S., Kuipers, J.A.M., Padding, J.T., Peters, E.A.J.F.: An improved ghost-cell sharp interface immersed boundary method with direct forcing for particle laden flows. Comput. Fluids 175, 111–128 (2018)MathSciNetzbMATHGoogle Scholar
  156. 156.
    Majumdar, S., Iaccarino, G., Durbin, P.: RANS solvers with adaptive structured boundary non-conforming grids. Technical report, CTR Annual Research Brief (2001)Google Scholar
  157. 157.
    Mark, A., van Wachem, B.: Derivation and validation of a novel implicit second-order accurate immersed boundary method. J. Comput. Phys. 227(13), 6660–6680 (2008)MathSciNetzbMATHGoogle Scholar
  158. 158.
    Markauskas, D., Kačeniauskas, A.: The comparison of two domain repartitioning methods used for parallel discrete element computations of the hopper discharge. Adv. Eng. Softw. 84, 68–76 (2015)Google Scholar
  159. 159.
    Markauskas, D., Kačeniauskas, A., Maknickas, A.: Dynamic domain decomposition applied to hopper discharge simulation by discrete element method. Inf. Technol. Control 40(4), 286–292 (2011)Google Scholar
  160. 160.
    Maxey, M.: Simulation methods for particulate flows and concentrated suspensions. Ann. Rev. Fluid Mech. 49, 171–193 (2017)MathSciNetzbMATHGoogle Scholar
  161. 161.
    Maxey, M., Patel, B.: Localized force representations for particles sedimenting in Stokes flow. Int. J. Multiph. Flow 27(9), 1603–1626 (2001)zbMATHGoogle Scholar
  162. 162.
    Meinke, M., Schneiders, L., Günther, C., Schröder, W.: A cut-cell method for sharp moving boundaries in Cartesian grids. Comput. Fluids 85, 135–142 (2013)MathSciNetzbMATHGoogle Scholar
  163. 163.
    Meng, L., Li, S., Lu, P., Li, T., Jin, W.: Bending and elongation effects on the random packing of curved spherocylinders. Phys. Rev. E 86(6), 061309 (2012)Google Scholar
  164. 164.
    Mirtich, B.V.: Impulse-based dynamic simulation of rigid body systems. PhD thesis, University of California at Berkeley (1996)Google Scholar
  165. 165.
    Mittal, R., Dong, H., Bozkurttas, M., Najjar, F.M., Vargas, A., von Loebbecke, A.: A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227(10), 4825–4852 (2008)MathSciNetzbMATHGoogle Scholar
  166. 166.
    Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)MathSciNetzbMATHGoogle Scholar
  167. 167.
    Moghaddam, E.M., Foumeny, E.A., Stankiewicz, A., Padding, J.: A rigid body dynamics algorithm for modeling random packing structures of non-spherical and non-convex pellets. Ind. Eng. Chem. Res. 57, 14988–15007 (2018)Google Scholar
  168. 168.
    Mohaghegh, F., Udaykumar, H.: Comparison of sharp and smoothed interface methods for simulation of particulate flows I: fluid structure interaction for moderate Reynolds numbers. Comput. Fluids 140, 39–58 (2016)MathSciNetzbMATHGoogle Scholar
  169. 169.
    Mohd-Yusof, J.: Combined immersed boundaries/B-splines methods for simulations of flows in complex geometries. Technical report, CTR Annual Research Brief (1997)Google Scholar
  170. 170.
    Moore, M., Wilhelms, J.: Collision detection and response for computer animation. In: ACM Siggraph Computer Graphics, vol 22, pp. 289–298. ACM (1988)Google Scholar
  171. 171.
    Moreau, J.J.: Evolution problem associated with a moving convex set in a Hilbert space. J. Differ. Equ. 26(3), 347–374 (1977)MathSciNetzbMATHGoogle Scholar
  172. 172.
    Moreau, J.J.: Application of convex analysis to some problems of dry friction. Trends Appl. Pure Math. Mech. 2, 263–280 (1979)MathSciNetzbMATHGoogle Scholar
  173. 173.
    Moreau, J.J.: Unilateral contact and dry friction in finite freedom dynamics. In: Moreau, J.J., Panagiotopoulos, P.D. (eds.) Nonsmooth Mechanics and Applications, Volume 302, Courses and Lectures, International Centre for Mechanical Sciences. Springer, New York (1988)Google Scholar
  174. 174.
    Moreau, J.J.: Some numerical methods in multibody dynamics: application to granular materials. Eur. J. Mech. A/Solids 13(4–suppl), 93–114 (1993)MathSciNetzbMATHGoogle Scholar
  175. 175.
    Mozafari-Shamsi, M., Sefid, M., Imani, G.: Application of the ghost fluid lattice Boltzmann method to moving curved boundaries with constant temperature or heat flux conditions. Comput. Fluids 167, 51–65 (2018)MathSciNetzbMATHGoogle Scholar
  176. 176.
    Mukundan, R.: Quaternions: from classical mechanics to computer graphics, and beyond. In: Proceedings of the 7th Asian Technology conference in Mathematics, pp. 97–105. Citeseer (2002)Google Scholar
  177. 177.
    Nezami, E.G., Hashash, M.A.Y., Zhao, D., Ghaboussi, J.: Shortest link method for contact detection in discrete element method. Int. J. Numer. Anal. Methods Geomech. 30(8), 783–801 (2006)zbMATHGoogle Scholar
  178. 178.
    Nezami, E.G., Hashash, Y.M.A., Zhao, D., Ghaboussi, J.: A fast contact detection algorithm for 3-D discrete element method. Comput. Geotech. 31(7), 575–587 (2004)Google Scholar
  179. 179.
    Ng, T.-T.: Numerical simulations of granular soil using elliptical particles. Comput. Geotech. 16(2), 153–169 (1994)Google Scholar
  180. 180.
    Nolan, G., Kavanagh, P.: Random packing of nonspherical particles. Powder Technol. 84(3), 199–205 (1995)Google Scholar
  181. 181.
    Nott, P., Brady, J.: Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech. 275(1), 157–199 (1994)zbMATHGoogle Scholar
  182. 182.
    NVIDIA. Accelerated computing, MPI Solutions for GPUs. https://developer.nvidia.com/mpi-solutions-gpus (2013). Accessed Nov 2018
  183. 183.
    NVIDIA. Accelerated computing, NVIDIA GPUDirect. https://developer.nvidia.com/gpudirect (2013). Accessed Nov 2018
  184. 184.
    Ong, C., Gilbert, E.: The Gilbert–Johnson–Keerthi distance algorithm: a fast version for incremental motions. In: Proceedings of the 1997 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1183–1189. IEEE (1997)Google Scholar
  185. 185.
    Ong, C., Gilbert, E.: Fast versions of the Gilbert–Johnson–Keerthi distance algorithm: additional results and comparisons. IEEE Trans. Robot. Autom. 17(4), 531–539 (2001)Google Scholar
  186. 186.
    Ouadfel, H., Rothenburg, L.: An algorithm for detecting inter-ellipsoid contacts. Comput. Geotech. 24(4), 245–263 (1999)Google Scholar
  187. 187.
    Ozel, A., de Motta, J., Abbas, M., Fede, P., Masbernat, O., Vincent, S., Estivalezes, J.-L., Simonin, O.: Particle resolved direct numerical simulation of a liquid-solid fluidized bed: comparison with experimental data. Int. J. Multiph. Flow 89, 228–240 (2017)MathSciNetGoogle Scholar
  188. 188.
    Pan, T., Joseph, D., Bai, R., Glowinski, R., Sarin, V.: Fluidization of 1204 spheres: simulation and experiment. J. Fluid Mech. 451, 169–191 (2002)MathSciNetzbMATHGoogle Scholar
  189. 189.
    Pan, T., Joseph, D., Glowinski, R.: Modelling Rayleigh–Taylor instability of a sedimenting suspension of several thousand circular particles in a direct numerical simulation. J. Fluid Mech. 434, 23–37 (2001)zbMATHGoogle Scholar
  190. 190.
    Patankar, N., Singh, P., Joseph, D., Glowinski, R., Pan, T.: A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiph. Flow 26(9), 1509–1524 (2000)zbMATHGoogle Scholar
  191. 191.
    Pereira, G., Cleary, P.: Segregation due to particle shape of a granular mixture in a slowly rotating tumbler. Granul. Matter 19(2), 23 (2017)Google Scholar
  192. 192.
    Peskin, C.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25(3), 220–252 (1977)MathSciNetzbMATHGoogle Scholar
  193. 193.
    Peskin, C.: The immersed boundary method. Acta Numer. 11(1), 479–517 (2002)MathSciNetzbMATHGoogle Scholar
  194. 194.
    Peskin, C.S.: Flow patterns around heart valves: a digital computer method for solving the equations of motion. PhD thesis, Albert Einstein College of Medicine (1972)Google Scholar
  195. 195.
    Pletinckx, D.: Quaternion calculus as a basic tool in computer graphics. Vis. Comput. 5(1), 2–13 (1989)zbMATHGoogle Scholar
  196. 196.
    Podlozhnyuk, A., Pirker, S., Kloss, C.: Efficient implementation of superquadric particles in discrete element method within an open-source framework. Comput. Part. Mech. 4(1), 101–118 (2017)Google Scholar
  197. 197.
    Popinet, S.: Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190(2), 572–600 (2003)MathSciNetzbMATHGoogle Scholar
  198. 198.
    Popinet, S.: A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations. J. Comput. Phys. 302, 336–358 (2015)MathSciNetzbMATHGoogle Scholar
  199. 199.
    Portal, R., Sousa, L., Dias, J., Santos, N.: Contact detection of convex superquadrics using optimization techniques with graphical user interface. In: Proceedings of the 7th EUROMECH Solid Mechanics Conference, Lisboa, Portugal (2009)Google Scholar
  200. 200.
    Prosperetti, A., Oguz, H.N.: Physalis: a new o (N) method for the numerical simulation of disperse systems: potential flow of spheres. J. Comput. Phys. 167(1), 196–216 (2001)MathSciNetzbMATHGoogle Scholar
  201. 201.
    Radjaï, F., Dubois, F.: Discrete-Element Modeling of Granular Materials. Wiley-ISTE, London (2011)Google Scholar
  202. 202.
    Radjai, F., Jean, M., Moreau, J.J., Roux, S.: Force distributions in dense two-dimensional granular systems. Phys. Rev. Letters 77(2), 274 (1996)Google Scholar
  203. 203.
    Radjai, F., Richefeu, V.: Contact dynamics as a nonsmooth discrete element method. Mech. Mater. 41(6), 715–728 (2009)Google Scholar
  204. 204.
    Radjai, F., Roux, J.-N., Daouadji, A.: Modeling granular materials: century-long research across scales. J. Eng. Mech. 143(4), 04017002 (2017)Google Scholar
  205. 205.
    Radjai, F., Roux, S., Moreau, J.J.: Contact forces in a granular packing. Chaos. Interdiscip. J. Nonlinear Sci. 9(3), 544–550 (1999)zbMATHGoogle Scholar
  206. 206.
    Rahmani, M., Hammouti, A., Wachs, A.: Momentum balance and stresses in a suspension of spherical particles in a plane Couette flow. Phys. Fluids 30(4), 043301 (2018)Google Scholar
  207. 207.
    Rahmani, M., Wachs, A.: Free falling and rising of spherical and angular particles. Phys. Fluids 26, 083301 (2014)Google Scholar
  208. 208.
    Rakotonirina, A., Wachs, A.: Grains3D, a flexible DEM approach for particles of arbitrary convex shape—part II: parallel implementation and scalable performance. Powder Technol. 324, 18–35 (2018)Google Scholar
  209. 209.
    Rakotonirina, A.D., Delenne, J.-Y., Radjai, F., Wachs, A.: Grains3D, a flexible DEM approach for particles of arbitrary convex shape—part III: extension to non-convex particles modelled as glued convex particles. Comput. Part. Mech. 5(4), 1–30 (2018)Google Scholar
  210. 210.
    Renouf, M., Dubois, F., Alart, P.: A parallel version of the non smooth contact dynamics algorithm applied to the simulation of granular media. J. Comput. Appl. Math. 168(1–2), 375–382 (2004)MathSciNetzbMATHGoogle Scholar
  211. 211.
    Richter, A., Nikrityuk, P.: Drag forces and heat transfer coefficients for spherical, cuboidal and ellipsoidal particles in cross flow at sub-critical Reynolds numbers. Int. J. Heat Mass Transf 55(4), 1343–1354 (2012)zbMATHGoogle Scholar
  212. 212.
    Ristow, G.H.: Molecular dynamics simulations of granular materials on the intel ipsc/860. Int. J. Mod. Phys. C 3(06), 1281–1293 (1992)Google Scholar
  213. 213.
    Ristow, G.H., Herrmann, H.J.: Forces on the walls and stagnation zones in a hopper filled with granular material. Phys. A Stat. Mech. Appl. 213(4), 474–481 (1995)Google Scholar
  214. 214.
    Ritz, J., Caltagirone, J.: A numerical continuous model for the hydrodynamics of fluid particle systems. Int. J. Numer. Methods Fluids 30(8), 1067–1090 (1999)zbMATHGoogle Scholar
  215. 215.
    Rémond, S., Gallias, J., Mizrahi, A.: Simulation of the packing of granular mixtures of non-convex particles and voids characterization. Granul. Matter 10(3), 157–170 (2008)zbMATHGoogle Scholar
  216. 216.
    Rohde, M., Kandhai, D., Derksen, J.J., Van den Akker, H.E.A.: A generic, mass conservative local grid refinement technique for lattice-Boltzmann schemes. Int. J. Numer. Methods Fluids 51(4), 439–468 (2006)MathSciNetzbMATHGoogle Scholar
  217. 217.
    Roma, A., Peskin, C., Berger, M.: An adaptive version of the immersed boundary method. J. Comput. Phys. 153(2), 509–534 (1999)MathSciNetzbMATHGoogle Scholar
  218. 218.
    Rothenburg, L., Bathurst, R.J.: Analytical study of induced anisotropy in idealized granular materials. Geotechnique 39(4), 601–614 (1989)Google Scholar
  219. 219.
    Rothenburg, L., Bathurst, R.J.: Numerical simulation of idealized granular assemblies with plane elliptical particles. Comput. Geotech. 11(4), 315–329 (1991)Google Scholar
  220. 220.
    Sadd, M., Tai, Q., Shukla, A.: Contact law effects on wave propagation in particulate materials using distinct element modeling. Int. J. Non-linear Mech. 28(2), 251–265 (1993)zbMATHGoogle Scholar
  221. 221.
    Saff, E., Kuijlaars, A.: Distributing many points on a sphere. Math. Intell. 19(1), 5–11 (1997)MathSciNetzbMATHGoogle Scholar
  222. 222.
    Saramito, P., Wachs, A.: Progress in numerical simulation of yield stress fluid flows. Rheol. Acta 56(3), 211–230 (2017)Google Scholar
  223. 223.
    Schneiders, L., Günther, C., Meinke, M., Schröder, W.: An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows. J. Comput. Phys. 311, 62–86 (2016)MathSciNetzbMATHGoogle Scholar
  224. 224.
    Schneiders, L., Hartmann, D., Meinke, M., Schröder, W.: An accurate moving boundary formulation in cut-cell methods. J. Comput. Phys. 235, 786–809 (2013)MathSciNetGoogle Scholar
  225. 225.
    Seelen, L., Padding, J., Kuipers, J.: Improved quaternion-based integration scheme for rigid body motion. Acta Mech. 227(12), 3381–3389 (2016)MathSciNetzbMATHGoogle Scholar
  226. 226.
    Seelen, L., Padding, J., Kuipers, J.: A granular discrete element method for arbitrary convex particle shapes: method and packing generation. Chem. Eng. Sci. 189, 84–101 (2018)Google Scholar
  227. 227.
    Seo, J.H., Mittal, R.: A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries. J. Comput. Phys. 230(4), 1000–1019 (2011)MathSciNetzbMATHGoogle Scholar
  228. 228.
    Shivarama, R., Fahrenthold, E.: Hamilton’s equations with Euler parameters for rigid body dynamics modeling. J. Dyn. Syst. Meas. Control 126, 124 (2004)Google Scholar
  229. 229.
    Shoemake, K.: Animating rotation with quaternion curves. ACM SIGGRAPH Comput. Graph. 19(3), 245–254 (1985)Google Scholar
  230. 230.
    Sierakowski, A.J., Prosperetti, A.: Resolved-particle simulation by the Physalis method: enhancements and new capabilities. J. Comput. Phys. 309, 164–184 (2016)MathSciNetzbMATHGoogle Scholar
  231. 231.
    Sierou, A., Brady, J.F.: Accelerated Stokesian dynamics simulations. J. Fluid Mech. 448, 115–146 (2001)zbMATHGoogle Scholar
  232. 232.
    Sierou, A., Brady, J.F.: Rheology and microstructure in concentrated noncolloidal suspensions. J. Rheol. 46(5), 1031–1056 (2002)Google Scholar
  233. 233.
    Silva, A.L.F.L.E., Silveira-Neto, A., Damasceno, J.J.R.: Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method. J. Comput. Phys. 189(2), 351–370 (2003)zbMATHGoogle Scholar
  234. 234.
    Sinnott, M., Cleary, P., Morrison, R.: Is media shape important for grinding performance in stirred mills? Miner. Eng. 24(2), 138–151 (2011)Google Scholar
  235. 235.
    Smeets, B., Odenthal, T., Vanmaercke, S., Ramon, H.: Polygon-based contact description for modeling arbitrary polyhedra in the discrete element method. Comput. Methods Appl. Mech. Eng. 290, 277–289 (2015)MathSciNetzbMATHGoogle Scholar
  236. 236.
    Soltanbeigi, B., Podlozhnyuk, A., Papanicolopulos, S.-A., Kloss, C., Pirker, S., Ooi, J.: DEM study of mechanical characteristics of multi-spherical and superquadric particles at micro and macro scales. Powder Technol. 329, 288–303 (2018)Google Scholar
  237. 237.
    Song, Y., Turton, R., Kayihan, F.: Contact detection algorithms for DEM simulations of tablet-shaped particles. Powder Technol. 161(1), 32–40 (2006)Google Scholar
  238. 238.
    Stewart, D.: Rigid-body dynamics with friction and impact. SIAM Rev. 42(1), 3–39 (2000)MathSciNetzbMATHGoogle Scholar
  239. 239.
    Sun, B., Tenneti, S., Subramaniam, S.: Modeling average gas–solid heat transfer using particle-resolved direct numerical simulation. Int. J. Heat Mass Transf. 86, 898–913 (2015)Google Scholar
  240. 240.
    Taira, K., Colonius, T.: The immersed boundary method: a projection approach. J. Comput. Phys. 225(2), 2118–2137 (2007)MathSciNetzbMATHGoogle Scholar
  241. 241.
    Takashi, N., Hughes, T.J.R.: An arbitrary Lagrangian–Eulerian finite element method for interaction of fluid and a rigid body. Comput. Methods Appl. Mech. Eng. 95(1), 115–138 (1992)zbMATHGoogle Scholar
  242. 242.
    Tang, Y., Kriebitzsch, S., Peters, E., van der Hoef, M., Kuipers, J.: A methodology for highly accurate results of direct numerical simulations: drag force in dense gas–solid flows at intermediate Reynolds number. Int. J. Multiph. Flow 62, 73–86 (2014)MathSciNetGoogle Scholar
  243. 243.
    Tangri, H., Guo, Y., Curtis, J.: Packing of cylindrical particles: DEM simulations and experimental measurements. Powder Technol. 317, 72–82 (2017)Google Scholar
  244. 244.
    Tenneti, S., Garg, R., Subramaniam, S.: Drag law for monodisperse gas-solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. Int. J. Multiph. Flow 37(9), 1072–1092 (2011)Google Scholar
  245. 245.
    Tezduyar, T., Behr, M., Liou, J.: A new strategy for finite element computations involving moving boundaries and interfaces-the DSD/ST procedure: I. The concept and the preliminary numerical tests. Comput. Methods Appl. Mech. Eng. 94(3), 339–351 (1992)zbMATHGoogle Scholar
  246. 246.
    Tezduyar, T.E., Behr, M., Mittal, S., Liou, J.: A new strategy for finite element computations involving moving boundaries and interfaces-the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput. Methods Appl. Mech. Eng. 94(3), 353–371 (1992)MathSciNetzbMATHGoogle Scholar
  247. 247.
    Thornton, C., Cummins, S.J., Cleary, P.W.: An investigation of the comparative behaviour of alternative contact force models during elastic collisions. Powder Technol. 210(3), 189–197 (2011)Google Scholar
  248. 248.
    Thornton, C., Cummins, S.J., Cleary, P.W.: An investigation of the comparative behaviour of alternative contact force models during inelastic collisions. Powder Technol. 233, 30–46 (2013)Google Scholar
  249. 249.
    Ting, J.M.: A robust algorithm for ellipse-based discrete element modelling of granular materials. Comput. Geotech. 13(3), 175–186 (1992)MathSciNetGoogle Scholar
  250. 250.
    Tiwari, A., Vanka, S.P.: A ghost fluid Lattice Boltzmann method for complex geometries. Int. J. Numer. Methods Fluids 69(2), 481–498 (2012)MathSciNetzbMATHGoogle Scholar
  251. 251.
    Topin, V., Dubois, F., Monerie, Y., Perales, F., Wachs, A.: Micro-rheology of dense particulate flows: application to immersed avalanches. J. Nonnewton. Fluid Mech. 166(1), 63–72 (2011)zbMATHGoogle Scholar
  252. 252.
    Tsuji, Y., Kawaguchi, T., Tanaka, T.: Discrete particle simulation of two-dimensional fluidized bed. Powder Technol. 77(1), 79–87 (1993)Google Scholar
  253. 253.
    Tsuji, Y., Tanaka, T., Ishida, T.: Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71(3), 239–250 (1992)Google Scholar
  254. 254.
    Tsuzuki, S., Aoki, T.: Large-scale granular simulations using dynamic load balance on a GPU supercomputer. In: Poster at the 26th IEEE/ACM International Conference on High Performance Computing, Networking, Storage and Analysis (2014)Google Scholar
  255. 255.
    Udaykumar, H., Shyy, W., Rao, M.M.: Elafint: a mixed Eulerian–Lagrangian method for fluid flows with complex and moving boundaries. Int. J. Numer. Methods Fluids 22(8), 691–712 (1996)MathSciNetzbMATHGoogle Scholar
  256. 256.
    Udaykumar, H.S., Mittal, R., Rampunggoon, P.: Interface tracking finite volume method for complex solid–fluid interactions on fixed meshes. Commun. Numer. Methods Eng. 18(2), 89–97 (2002)zbMATHGoogle Scholar
  257. 257.
    Udaykumar, H.S., Mittal, R., Rampunggoon, P., Khanna, A.: A sharp interface Cartesian grid method for simulating flows with complex moving boundaries. J. Comput. Phys. 174(1), 345–380 (2001)zbMATHGoogle Scholar
  258. 258.
    Uhlmann, M.: An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209(2), 448–476 (2005)MathSciNetzbMATHGoogle Scholar
  259. 259.
    van den Bergen, G.: Efficient collision detection of complex deformable models using AABB trees. J. Graph. Tools 2(4), 1–13 (1997)zbMATHGoogle Scholar
  260. 260.
    Van den Bergen, G.: A fast and robust GJK implementation for collision detection of convex objects. J. Graph. Gpu Game Tools 4, 7–25 (1999)Google Scholar
  261. 261.
    Van Den Bergen, G.: Proximity queries and penetration depth computation on 3d game objects. In: Game Developers Conference, vol. 170. Citeseer (2001)Google Scholar
  262. 262.
    Van Den Bergen, G.: Simulation and collision detection. In: Efficient Collision Detection of Complex Deformable Models Using AABB Trees, pp. 131. AK Peters, Ltd. (2005)Google Scholar
  263. 263.
    Van der Hoef, M., Beetstra, R., Kuipers, J.: Lattice-Boltzmann simulations of low-Reynolds-number flow past mono-and bidisperse arrays of spheres: results for the permeability and drag force. J. Fluid Mech. 528, 233–254 (2005)MathSciNetzbMATHGoogle Scholar
  264. 264.
    Van der Hoef, M., van Sint Annaland, M., Deen, N., Kuipers, J.: Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Ann. Rev. Fluid Mech. 40, 47–70 (2008)MathSciNetzbMATHGoogle Scholar
  265. 265.
    Veeramani, C., Minev, P., Nandakumar, K.: A fictitious domain formulation for flows with rigid particles: a non-Lagrange multiplier version. J. Comput. Phys. 224(2), 867–879 (2007)MathSciNetzbMATHGoogle Scholar
  266. 266.
    Vincent, S., Brändle de Motta, J., Sarthou, A., Estivalezes, J.-L., Simonin, O., Climent, E.: A Lagrangian VOF tensorial penalty method for the DNS of resolved particle-laden flows. J. Comput. Phys. 256, 582–614 (2014)MathSciNetzbMATHGoogle Scholar
  267. 267.
    Wachs, A.: A DEM-DLM/FD method for direct numerical simulation of particulate flows: sedimentation of polygonal isometric particles in a Newtonian fluid with collisions. Comput. Fluids 38(8), 1608–1628 (2009)zbMATHGoogle Scholar
  268. 268.
    Wachs, A.: PeliGRIFF, a parallel DEM-DLM/FD direct numerical simulation tool for 3D particulate flows. J. Eng. Math. 71(1), 131–155 (2011)MathSciNetzbMATHGoogle Scholar
  269. 269.
    Wachs, A., Girolami, L., Vinay, G., Ferrer, G.: Grains3D, a flexible DEM approach for particles of arbitrary convex shape—part I: numerical model and validations. Powder Technol. 224, 374–389 (2012)Google Scholar
  270. 270.
    Wachs, A., Hammouti, A., Vinay, G., Rahmani, M.: Accuracy of finite volume/staggered grid distributed Lagrange multiplier/fictitious domain simulations of particulate flows. Comput. Fluids 115, 154–172 (2015)MathSciNetzbMATHGoogle Scholar
  271. 271.
    Walther, J., Sbalzarini, I.: Large-scale parallel discrete element simulations of granular flow. Eng. Comput. 26, 688–697 (2009)Google Scholar
  272. 272.
    Walton, O., Braun, R.: Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. J. Rheol. 30(5), 949–980 (1986)Google Scholar
  273. 273.
    Walton, O.R., Braun, R.L.: Simulation of rotary-drum and repose tests for frictional spheres and rigid sphere clusters. In: Joint DOE/NSF Workshop on Flow of Particulates and Fluids, Ithaca (1993)Google Scholar
  274. 274.
    Wang, Z., Fan, J., Luo, K.: Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles. Int. J. Multiph. Flow 34(3), 283–302 (2008)Google Scholar
  275. 275.
    Weinhart, T., Labra, C., Luding, S., Ooi, J.Y.: Influence of coarse-graining parameters on the analysis of DEM simulations of silo flow. Powder Technol. 293, 138–148 (2016)Google Scholar
  276. 276.
    Williams, J., O’Connor, R.: A linear complexity intersection algorithm for discrete element simulation of arbitrary geometries. Eng. Comput. 12(2), 185–202 (1995)Google Scholar
  277. 277.
    Williams, J., Perkins, E., Cook, B.: A contact algorithm for partitioning N arbitrary sized objects. Eng. Comput. 21(2), 235–248 (2004)zbMATHGoogle Scholar
  278. 278.
    Wilson, R., Dini, D., Van Wachem, B.: The influence of surface roughness and adhesion on particle rolling. Powder Technol. 312, 321–333 (2017)Google Scholar
  279. 279.
    Wu, C., Cocks, A.: Numerical and experimental investigations of the flow of powder into a confined space. Mech. Mater. 38(4), 304–324 (2006)Google Scholar
  280. 280.
    Wu, Y., An, X., Yu, A.: DEM simulation of cubical particle packing under mechanical vibration. Powder Technol. 314, 89–101 (2017)Google Scholar
  281. 281.
    Xia, J., Luo, K., Fan, J.: A ghost-cell based high-order immersed boundary method for inter-phase heat transfer simulation. Int. J. Heat Mass Transf. 75, 302–312 (2014)Google Scholar
  282. 282.
    Xia, J., Luo, K., Fan, J.: Simulating heat transfer from moving rigid bodies using high-order ghost-cell based immersed-boundary method. Int. J. Heat Mass Transf. 89, 856–865 (2015)Google Scholar
  283. 283.
    Yang, R., Zou, R., Yu, A.: Microdynamic analysis of particle flow in a horizontal rotating drum. Powder Technol. 130(1–3), 138–146 (2003)Google Scholar
  284. 284.
    Ye, T., Mittal, R., Udaykumar, H.S., Shyy, W.: An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J. Comput. Phys. 156(2), 209–240 (1999)MathSciNetzbMATHGoogle Scholar
  285. 285.
    Yiantsios, S.: On the distributed Lagrange multiplier/fictitious domain method for rigid-particle-laden flows: a proposition for an alternative formulation of the Lagrange multipliers. Int. J. Numer. Methods Fluids 70, 1027–1047 (2012)MathSciNetGoogle Scholar
  286. 286.
    You, Y., Zhao, Y.: Discrete element modelling of ellipsoidal particles using super-ellipsoids and multi-spheres: a comparative study. Powder Technol. 331, 179–191 (2018)Google Scholar
  287. 287.
    Yu, Z., Fan, L.-S.: An interaction potential based lattice Boltzmann method with adaptive mesh refinement (AMR) for two-phase flow simulation. J. Comput. Phys. 228(17), 6456–6478 (2009)MathSciNetzbMATHGoogle Scholar
  288. 288.
    Yu, Z., Lin, Z., Shao, X., Wang, L.-P.: A parallel fictitious domain method for the interface-resolved simulation of particle-laden flows and its application to the turbulent channel flow. Eng. Appl. Comput. Fluid Mech. 10(1), 160–170 (2016)Google Scholar
  289. 289.
    Yu, Z., Phan-Thien, N., Fan, Y., Tanner, R.: Viscoelastic mobility problem of a system of particles. J. Nonnewton. Fluid Mech. 104(2–3), 87–124 (2002)zbMATHGoogle Scholar
  290. 290.
    Yu, Z., Phan-Thien, N., Tanner, R.: Dynamic simulation of sphere motion in a vertical tube. J. Fluid Mech. 518, 61–93 (2004)zbMATHGoogle Scholar
  291. 291.
    Yu, Z., Shao, X.: A direct-forcing fictitious domain method for particulate flows. J. Comput. Phys. 227(1), 292–314 (2007)zbMATHGoogle Scholar
  292. 292.
    Yu, Z., Shao, X., Wachs, A.: A fictitious domain method for particulate flows with heat transfer. J. Comput. Phys. 217(2), 424–452 (2006)MathSciNetzbMATHGoogle Scholar
  293. 293.
    Yu, Z., Wachs, A.: A fictitious domain method for dynamic simulation of particle sedimentation in Bingham fluids. J. Nonnewton. Fluid Mech. 145(2), 78–91 (2007)zbMATHGoogle Scholar
  294. 294.
    Yu, Z., Wachs, A., Peysson, Y.: Numerical simulation of particle sedimentation in shear-thinning fluids with a fictitious domain method. J. Nonnewton. Fluid Mech. 136(2), 126–139 (2006)zbMATHGoogle Scholar
  295. 295.
    Zhang, Z., Prosperetti, A.: A method for particle simulation. J. Appl. Mech. 70(1), 64–74 (2003)zbMATHGoogle Scholar
  296. 296.
    Zhang, Z., Prosperetti, A.: A second-order method for three-dimensional particle simulation. J. Comput. Phys. 210(1), 292–324 (2005)MathSciNetzbMATHGoogle Scholar
  297. 297.
    Zhao, B., An, X., Wang, Y., Qian, Q., Yang, X., Sun, X.: DEM dynamic simulation of tetrahedral particle packing under 3D mechanical vibration. Powder Technol. 317, 171–180 (2017)Google Scholar
  298. 298.
    Zhao, F., van Wachem, B.: A novel quaternion integration approach for describing the behaviour of non-spherical particles. Acta Mech. 224(12), 3091–3109 (2013)MathSciNetzbMATHGoogle Scholar
  299. 299.
    Zhou, Y., Wright, B., Yang, R., Xu, B., Yu, A.: Rolling friction in the dynamic simulation of sandpile formation. Phys. A Stat. Mech. Appl. 269(2–4), 536–553 (1999)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  2. 2.Department of Chemical and Biological EngineeringUniversity of British ColumbiaVancouverCanada

Personalised recommendations