Advertisement

Acta Mechanica

, Volume 230, Issue 7, pp 2385–2398 | Cite as

A gradient weighted extended finite element method (GW-XFEM) for fracture mechanics

  • S. Z. Feng
  • S. P. A. Bordas
  • X. HanEmail author
  • G. Wang
  • Z. X. Li
Original Paper
  • 47 Downloads

Abstract

In this study, a gradient weighted extended finite element method (GW-XFEM) is presented for the analysis of fracture problems. For this method, the domain discretization is the same as the standard XFEM. However, the gradient field is constructed by considering the influences of the element itself and its adjacent elements. Based on the Shepard interpolation, the weighted strain filed can be obtained, which will be utilized to construct the discretized system equations. The validity of the presented method is fully investigated through several numerical examples. From these results, it is shown that compared with standard XFEM, the presented method can achieve much better accuracy, efficiency and higher convergence, when dealing with fracture analysis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is supported by State Key Program of National Natural Science of China (11832011), Taishan Scholar project of Shandong Province, National Natural Science Foundation of China (11702080) and the Natural Science Foundation of Hebei Province of China (A2018202205).

References

  1. 1.
    Menouillard, T., Belytschko, T.: Dynamic fracture with meshfree enriched XFEM. Acta Mech. 213, 53–69 (2008)CrossRefzbMATHGoogle Scholar
  2. 2.
    Spieler, C., Kaestner, M., Goldmann, J., Brummund, J., Ulbricht, V.: XFEM modeling and homogenization of magnetoactive composites. Acta Mech. 224, 2453–2469 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Wu, L., Liu, P., Shi, C., Zhang, Z., Bui, T.Q., Jiao, D.: Edge-based smoothed extended finite element method for dynamic fracture analysis. Appl. Math. Model. 40, 8564–8579 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Areias, P., Rabczuk, T., Dias-da-Costa, D.: Element-wise fracture algorithm based on rotation of edges. Eng. Fract. Mech. 110, 113–137 (2013)CrossRefGoogle Scholar
  5. 5.
    Bansal, M., Singh, I.V., Mishra, B.K., Sharma, K., Khan, I.A.: A stochastic XFEM model for the tensile strength prediction of heterogeneous graphite based on microstructural observations. J. Nucl. Mater. 487, 143–157 (2017)CrossRefGoogle Scholar
  6. 6.
    Singh, S.K., Singh, I.V., Mishra, B.K., Bhardwaj, G., Bui, T.Q.: A simple, efficient and accurate Bézier extraction based T-spline XIGA for crack simulations. Theor. Appl. Fract. Mech. 88, 74–96 (2017)CrossRefGoogle Scholar
  7. 7.
    Agathos, K., Chatzi, E., Bordas, S., Talaslidis, D.: A well-conditioned and optimally convergent XFEM for 3D linear elastic fracture. Int. J. Numer. Methods Eng. 9, 643–677 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bordas, S., Duflot, M., Le, P.: A simple error estimator for extended finite elements. Commun. Numer. Methods Eng. 11, 961–971 (2008)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 602–620 (1999)CrossRefzbMATHGoogle Scholar
  10. 10.
    Moes, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ghorashi, S.S., Valizadeh, N., Mohammadi, S., Rabczuk, T.: T-spline based XIGA for fracture analysis of orthotropic media. Comput. Struct. 147, 138–146 (2015)CrossRefGoogle Scholar
  12. 12.
    Patil, R.U., Mishra, B.K., Singh, I.V.: A new multiscale XFEM for the elastic properties evaluation of heterogeneous materials. Int. J. Mech. Sci. 122, 277–287 (2017)CrossRefGoogle Scholar
  13. 13.
    Wang, Z., Yu, T.T., Bui, T.Q., Ngoc, Anh T., Nguyen-Thi, H.L., Nguyen-Dinh, D., Duc-Hong, D.: Numerical modeling of 3-D inclusions and voids by a novel adaptive XFEM. Adv. Eng. Softw. 102, 105–122 (2016)CrossRefGoogle Scholar
  14. 14.
    Feng, S.Z., Li, W.: An accurate and efficient algorithm for the simulation of fatigue crack growth based on XFEM and combined approximations. Appl. Math. Model. 55, 600–615 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Sutula, D., Kerfriden, P., Van Dam, T., Bordas, S.: Minimum energy multiple crack propagation. Part I: theory and state of the art review. Eng. Fract. Mech. 191, 205–224 (2017)CrossRefGoogle Scholar
  16. 16.
    Sutula, D., Kerfriden, P., Van Dam, T., Bordas, S.: Minimum energy multiple crack propagation. Part-II: discrete solution with XFEM. Eng. Fract. Mech. 191, 225–256 (2017)CrossRefGoogle Scholar
  17. 17.
    Sutula, D., Kerfriden, P., Van Dam, T., Bordas, S.: Minimum energy multiple crack propagation. Part III: XFEM computer implementation and applications. Eng. Fract. Mech. 191, 257–276 (2017)CrossRefGoogle Scholar
  18. 18.
    Wu, S.C., Zhang, W.H., Peng, X., Miao, B.R.: A twice-interpolation finite element method (TFEM) for crack propagation problems. Int. J. Comput. Methods 9, 1250055 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Bui, T.Q., Nguyen, D.D., Zhang, X.D., Hirose, S., Batra, R.C.: Analysis of 2-dimensional transient problems for linear elastic and piezoelectric structures using the consecutive-interpolation quadrilateral element (CQ4). Euro. J. Mech. A/Solids 58, 112–130 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Bui, T.Q., Vo, D.Q., Zhang, C.Z., Nguyen, D.D.: A consecutive-interpolation quadrilateral element (CQ4): formulation and applications. Finite Elem. Anal. Des. 84, 14–31 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kang, Z.Y., Bui, T.Q., Nguyen, D.D., Saitoh, T., Hirose, S.: An extended consecutive interpolation quadrilateral element (XCQ4) applied to linear elastic fracture mechanics. Acta Mech. 226, 3991–4015 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kang, Z.Y., Bui, T.Q., Saitoh, T., Hirose, S.: Quasi-static crack propagation simulation by an enhanced nodal gradient finite element with different enrichments. Theor. Appl. Fract. Mech. 87, 61–77 (2017)CrossRefGoogle Scholar
  23. 23.
    Kang, Z.Y., Bui, T.Q., Nguyen, D.D., Hirose, S.: Dynamic stationary crack analysis of isotropic solids and anisotropic composites by enhanced local enriched consecutive-interpolation elements. Compos. Struct. 180, 221–233 (2017)CrossRefGoogle Scholar
  24. 24.
    Bui, T.Q., Nguyen, M.N., Nguyen, N.T., Truong, T.T., Lich, L.V.: Simulation of dynamic and static thermoelastic fracture problems by extended nodal gradient finite elements. Int. J. Mech. Sci. 134, 370–386 (2017)CrossRefGoogle Scholar
  25. 25.
    Yu, T.T., Bui, T.Q.: Numerical simulation of 2-D weak and strong discontinuities by a novel approach based on XFEM with local mesh refinement. Comput. Struct. 196, 112–133 (2018)CrossRefGoogle Scholar
  26. 26.
    Wang, Z., Yu, T.T., Bui, T.Q., Tanaka, S., Zhang, C.Z., Hirose, S., Curiel-Sosa, J.L.: 3-D local mesh refinement XFEM with variable-node hexahedron elements for extraction of stress intensity factors of straight and curved planar cracks. Comput. Methods Appl. Mech. Eng. 313, 375–405 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Cui, X.Y., Li, Z.C., Feng, H., Feng, S.Z.: Steady and transient heat transfer analysis using a stable node-based smoothed finite element method. Int. J. Therm. Sci. 110, 12–25 (2016)CrossRefGoogle Scholar
  28. 28.
    Hu, X.B., Cui, X.Y., Feng, H., Li, G.Y.: Stochastic analysis using the generalized perturbation stable node-based smoothed finite element method. Eng. Anal. Bound. Elem. 70, 40–55 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Bordas, S., Rabczuk, T., Nguyen-Xuan, H., Nguyen-Vinh, P., Natarajan, S., Bog, T., Do-Minh, Q., Nguyen-Vinh, H.: Strain smoothing in FEM and XFEM. Comput. Struct. 88, 1419–1443 (2010)CrossRefGoogle Scholar
  30. 30.
    Chen, L., Rabczuk, T., Bordas, S., Liu, G.R., Zeng, K.Y., Kerfriden, P.: Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth. Comput. Methods Appl. Mech. Eng. 209, 250–265 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Vu-Bac, N., Nguyen-Xuan, H., Chen, L., Bordas, S., Kerfriden, P., Simpson, R.N.: A node-based smoothed eXtended finite element method (NS-XFEM) for fracture analysis. Comput. Model. Eng. Sci. 73, 331–56 (2011)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Brodlie, K.W., Asim, M.R., Unsworth, K.: Constrained visualization using the Shepard interpolation family. Comput. Graph. Forum. 24, 809–820 (2005)CrossRefGoogle Scholar
  33. 33.
    Cui, X.Y., Hu, X., Wang, G., Li, G.Y.: An accurate and efficient scheme for acoustic-structure interaction problems based on unstructured mesh. Comput. Methods Appl. Mech. Eng. 317, 1122–1145 (2017)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Sih, G.C.: Energy-density concept in fracture mechanics. Eng. Fract. Mech. 5, 1037–1040 (1973)CrossRefGoogle Scholar
  35. 35.
    Anderson, T.L.: Fracture Mechanics: Fundamentals and Applications. CRC Press, Boca Raton (1995)zbMATHGoogle Scholar
  36. 36.
    Srawley, J.E.: Wide range stress intensity factor expressions for ASTM E 399 standard fracture toughness specimens. Int. J. Fract. 12, 475–476 (1976)Google Scholar
  37. 37.
    Wu, J., Cai, Y.C.: A partition of unity formulation referring to the NMM for multiple intersecting crack analysis. Theor. Appl. Fract. Mech. 72, 28–36 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • S. Z. Feng
    • 1
  • S. P. A. Bordas
    • 2
    • 3
  • X. Han
    • 1
    Email author
  • G. Wang
    • 1
  • Z. X. Li
    • 4
    • 5
  1. 1.School of Mechanical EngineeringHebei University of TechnologyTianjinPeople’s Republic of China
  2. 2.Institute of Mechanics and Advanced Materials, School of EngineeringCardiff UniversityCardiffUK
  3. 3.Institute of Computational Engineering, Faculty of Sciences Communication and TechnologyUniversity of LuxembourgLuxembourg CityLuxembourg
  4. 4.School of EngineeringOcean University of ChinaQingdaoChina
  5. 5.School of Mechanical, Materials, Mechatronic and Biomedical EngineeringUniversity of WollongongWollongongAustralia

Personalised recommendations