Acta Mechanica

, Volume 230, Issue 5, pp 1565–1606 | Cite as

Micropolar plasticity—Part I: modeling based on curvature tensors related by mixed transformations

  • Daniel JohannsenEmail author
  • Charalampos Tsakmakis
Original Paper


When formulating finite deformation micropolar plasticity, the structure of the theory strongly depends on the choice of the variables describing the deformation kinematics. This holds true even for classical plasticity. However, in contrast to classical plasticity, the set of kinematical variables in micropolar plasticity includes, besides strain tensors, so-called micropolar curvature tensors. There are only a few investigations addressing such aspects, so the aim of the paper is to highlight the effect of a specific micropolar curvature kinematics on the structure of a micropolar plasticity. We do this by developing a general finite deformation micropolar plasticity, which relies upon a class of micropolar curvature tensors related to each other by mixed transformations. That means, the pull-back and push-forward transformations characterizing the class involve both deformation gradient and micropolar rotation tensors. The curvature kinematics is discussed by using geometrical methods developed previously. The plasticity theory is based on the assumption that the yield function and the flow rules are functions of specific micropolar Mandel’s stress tensors. The definition of the Mandel’s stress tensor is suggested by the adopted curvature kinematics and reveals a characteristic feature of the resulting plasticity. Moreover, the presence of curvature variables in plastic arc length gives reason to introduce a characteristic internal material length, which in turn seems to urge the form of the formulation of the theory. A specific version of von Mises micropolar plasticity with kinematic and isotropic hardening, derived in the theoretical context of the present paper, is elaborated in Part II.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Ask, A., Forest, S., Appolaire, B., Ammar, K., Salman, O.U.: A Cosserat crystal plasticity and phase field theory for grain boundary migration. J. Mech. Phys. Solids 115, 167–194 (2018). MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bilby, B.A., Bullough, R., Smith, E.: Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 231(1185), 263–273 (1955). ISSN 0080-4630MathSciNetGoogle Scholar
  3. 3.
    Broese, C., Sfyris, D., Tsakmakis, Ch.: Isoclinic versus arbitrary rotated intermediate configuration for gradient plasticity applications. Compos. Part B Eng. 43(6), 2633–2645 (2012). ISSN 1359-8368. Homogenization and micromechanics of smart and multifunctional materialsCrossRefGoogle Scholar
  4. 4.
    Chaboche, J.-L.: Cyclic viscoplastic constitutive equations, part I: a thermodynamically consistent formulation. J. Appl. Mech. 60(4), 813–821 (1993). ISSN 0021-8936CrossRefzbMATHGoogle Scholar
  5. 5.
    Chaboche, J.-L.: Cyclic viscoplastic constitutive equations, part II: stored energy—comparison between models and experiments. J. Appl. Mech. 60(4), 822–828 (1993). ISSN 0021-8936CrossRefGoogle Scholar
  6. 6.
    Châu Le, K., Stumpf, H.: Finite Elastoplasticity with Microstructure. Mitteilungen aus dem Institut für Mechanik // Ruhr-Universität Bochum. Ruhr-Univ. (1994).
  7. 7.
    Cho, H.W., Dafalias, Y.F.: Distortional and orientational hardening at large viscoplastic deformations. Int. J. Plast. 12(7), 903–925 (1996). ISSN 0749-6419CrossRefzbMATHGoogle Scholar
  8. 8.
    Cleja-Ţigoiu, S.: Couple stresses and non-Riemannian plastic connection in finite elasto-plasticity. Zeitschrift für angewandte Mathematik und Physik ZAMP 53(6), 996–1013 (2002). ISSN 1420-9039MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal. 13(1), 167–178 (1963). ISSN 0003-9527MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dafalias, Y .F.: On multiple spins and texture development. Case study: kinematic and orthotropic hardening. Acta Mech. 100(3), 171–194 (1993). ISSN 1619-6937MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    de Borst, R.: A generalisation of J2-flow theory for polar continua. Eng. Comput. 10(2), 99–121 (1993)CrossRefGoogle Scholar
  12. 12.
    deWit, R.: Relation between dislocations and disclinations. J. Appl. Phys. 42(9), 3304–3308 (1971). CrossRefGoogle Scholar
  13. 13.
    Dłużewski, P.H.: Finite elastic-plastic deformations of oriented media. In: Benellal, A., Billardon, R. (eds.) Proceedings of international symposium on multiaxial plasticity, MECAMAT’92, Cachan, France. Labolatoire de Mecanique et Technologie (1992)Google Scholar
  14. 14.
    Eckart, C.: The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity. Phys. Rev. 73, 373–382 (1948). MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Eringen, A.C.: Microcontinuum Field Theories: Volume 1, Foundations and Solids. Microcontinuum Field Theories: Foundations and Solids. Springer, Berlin (1999). ISBN 9780387986203Google Scholar
  16. 16.
    Eringen, A .C.: Theory of micropolar elasticity. In: Liebowitz, H. (ed.) Fracture: An Advanced Treatise, vol. 2, pp. 621–729. Academic Press, Cambridge (1968)Google Scholar
  17. 17.
    Eringen, A.C., Kafadar, C.B.: Polar field theories. In: Eringen, A.C. (ed.) Continuum Physics, vol. 4, pp. 1–73. Academic Press, New York (1976)Google Scholar
  18. 18.
    Fleck, N.A., Hutchinson, J.W.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49(10), 2245–2271 (2001). ISSN 0022-5096CrossRefzbMATHGoogle Scholar
  19. 19.
    Forest, S.: Micromorphic media. In: Altenbach, H., Eremeyev, V.A. (eds.) Generalized Continua from the Theory to Engineering Applications, vol. 541 of CISM International Centre for Mechanical Sciences, pp. 249–300. Springer, Vienna (2013). ISBN 978-3-7091-1370-7CrossRefGoogle Scholar
  20. 20.
    Forest, S., Sievert, R.: Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160(1), 71–111 (2003). ISSN 1619-6937CrossRefzbMATHGoogle Scholar
  21. 21.
    Forest, S., Cailletaud, G., Sievert, R.: A Cosserat theory for elastoviscoplastic single crystals at finite deformation. Arch. Mech. 49(4), 705–736 (1997)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Grammenoudis, P., Tsakmakis, Ch.: Hardening rules for finite deformation micropolar plasticity: restrictions imposed by the second law of thermodynamics and the postulate of Il’iushin. Contin. Mech. Thermodyn. 13(5), 325–363 (2001). ISSN 0935-1175MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Grammenoudis, P., Tsakmakis, Ch.: Finite element implementation of large deformation micropolar plasticity exhibiting isotropic and kinematic hardening effects. Int. J. Numer. Methods Eng. 62, 1691–1720 (2005)CrossRefzbMATHGoogle Scholar
  24. 24.
    Grammenoudis, P., Tsakmakis, Ch.: Predictions of microtorsional experiments by micropolar plasticity. Proc. R. Soc. A Math. Phys. Eng. Sci. 461(2053), 189–205 (2005).
  25. 25.
    Grammenoudis, P., Tsakmakis, Ch.: Incompatible deformations—plastic intermediate configuration. ZAMM J. Appl. Math. Mech. Zeitschrift für Angewandte Mathematik und Mechanik 88(5), 403–432 (2008). ISSN 1521-4001MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Grammenoudis, P., Tsakmakis, Ch.: Plastic intermediate configuration and related spatial differential operators in micromorphic plasticity. Math. Mech. Solids 15(5), 515–538 (2010). MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Grammenoudis, P., Tsakmakis, Ch., Hofer, D.: Micromorphic continuum. Part II: finite deformation plasticity coupled with damage. Int. J. Non Linear Mech. 44(9), 957–974 (2009). ISSN 0020-7462CrossRefGoogle Scholar
  28. 28.
    Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010). ISBN 9781139482158Google Scholar
  29. 29.
    Gurtin, M.E.: On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids 48(5), 989–1036 (2000). ISSN 0022-5096MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Gurtin, M.E.: A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50(1), 5–32 (2002). ISSN 0022-5096MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Haupt, P., Tsakmakis, Ch.: Stress tensors associated with deformation tensors via duality. Arch. Mech. 48(2), 347–384 (1996)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Kondo, K. (ed.): Non-Riemannian geometry of the imperfect crystal from a macroscopic viewpoint. In: RAAG Memoirs of the Unifying Study of Basic Problems in Engineering Sciences by Means of Geometry, vol. 1, Division D, pp. 458–469. Gakuyusty Bunken Fukin-Day, Tokyo (1955)Google Scholar
  33. 33.
    Kondo, K., Shimbo, M., Amari, S.: On the standpoint of non-Riemannian plasticity theory. In: Kondo, K. (ed.) RAAG Memoirs of the Unifying Study of Basic Problems in Engineering Sciences by Means of Geometry, vol. 4, pp. 205–224. Gakujutsu Bunken Fukyu-kai, Tokyo (1968)Google Scholar
  34. 34.
    Kröner, E.: Kontinuumstheorie der Versetzungen und Eigenspannungen. Springer, Berlin (1958)CrossRefzbMATHGoogle Scholar
  35. 35.
    Kröner, E.: Continuum theory of defects. In: Balian, R., Kleman, M., Poirier, J.-P. (eds.) Physics of Defects. Les Houches Session XXXV, vol. 35, pp. 217–315. North-Holland, Amsterdam (1981)Google Scholar
  36. 36.
    Lee, E.H.: Elastic-plastic deformation at finite strains. J. Appl. Mech. 36, 1–6 (1969). CrossRefzbMATHGoogle Scholar
  37. 37.
    Lee, E.H., Liu, D.T.: Finite-strain elastic-plastic theory with application to plane-wave analysis. J. Appl. Phys. 38(1), 19–27 (1967). CrossRefGoogle Scholar
  38. 38.
    Lubliner, J.: Normality rules in large-deformation plasticity. Mech. Mater. 5(1), 29–34 (1986). ISSN 0167-6636CrossRefGoogle Scholar
  39. 39.
    Materially Uniform Simple Bodies with Inhomogeneities. Department of Mathematics, Carnegie Institute of Technology, Pittsburgh (1967).
  40. 40.
    Minagawa, S.: Elastic fields of dislocations and disclinations in an isotropic micropolar continuum. Lett. Appl. Eng. Sci 5, 85–94 (1977)zbMATHGoogle Scholar
  41. 41.
    Ogden, R.W.: Non-linear Elastic Deformations. Dover Civil and Mechanical Engineering, Dover Publications, New York (1997). ISBN 9780486696485Google Scholar
  42. 42.
    Regueiro, R.A.: On finite strain micromorphic elastoplasticity. Int. J. Solids Struct. 47(6), 786–800 (2010). ISSN 0020-7683CrossRefzbMATHGoogle Scholar
  43. 43.
    Sansour, C.: A theory of the elastic-viscoplastic Cosserat continuum. Arch. Mech. 50(3), 577–597 (1998)zbMATHGoogle Scholar
  44. 44.
    Steinmann, P.: A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int. J. Solids Struct. 31(8), 1063–1084 (1994). ISSN 0020-7683MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Svendsen, B.: Objective frame derivatives for the hyperstress and couple stress. Arch. Mech. 46, 669–683 (1994). 01MathSciNetzbMATHGoogle Scholar
  46. 46.
    Svendsen, B.: A thermodynamic formulation of finite-deformation elastoplasticity with hardening based on the concept of material isomorphism. Int. J. Plast. 14(6), 473–488 (1998). ISSN 0749-6419CrossRefzbMATHGoogle Scholar
  47. 47.
    Svendsen, B.: On the modelling of anisotropic elastic and inelastic material behaviour at large deformation. Int. J. Solids Struct. 38(52), 9579–9599 (2001). ISSN 0020-7683CrossRefzbMATHGoogle Scholar
  48. 48.
    Svendsen, B., Arndt, S., Klingbeil, D., Sievert, R.: Hyperelastic models for elastoplasticity with non-linear isotropic and kinematic hardening at large deformation. Int. J. Solids Struct. 35(25), 3363–3389 (1998). ISSN 0020-7683CrossRefzbMATHGoogle Scholar
  49. 49.
    Tsakmakis, Ch.: On the loading conditions and the decomposition of deformation. In: Boehler, J.-P., Khan, A.S. (eds.) Anisotropy and Localization of Plastic Deformation, pp. 353–356. Springer, Dordrecht (1991). ISBN 978-1-85166-688-1CrossRefGoogle Scholar
  50. 50.
    Tsakmakis, Ch.: Description of plastic anisotropy effects at large deformations-part I: restrictions imposed by the second law and the postulate of Il’iushin. Int. J. Plast. 20(2), 167–198 (2004). ISSN 0749-6419CrossRefzbMATHGoogle Scholar
  51. 51.
    Volk, W.: Untersuchung des Lokalisierungsverhaltens mikropolarer poröser Medien mit Hilfe der Cosserat-Theorie. Bericht Nr. II-2. Universität Stuttgart Inst. f. Mechanik (Bauwesen), Stuttgart (1999)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Continuum Mechanics, Faculty of Civil EngineeringTU-DarmstadtDarmstadtGermany

Personalised recommendations