Advertisement

Exact steady-state solution to air pumping from underground partly covered by an impermeable tarp

  • V. V. Mityushev
  • P. M. AdlerEmail author
Original Paper
  • 11 Downloads

Abstract

A pipe is located in a semi-infinite two-dimensional porous medium partially covered by a tarp. A constant pressure gradient may be imposed at infinity on the medium while air is pumped into the pipe. The governing Laplace equation is solved by extending the famous Keldysh–Sedov formulae to doubly connected domains by reduction of the mixed problem to a Riemann–Hilbert problem with discontinuous coefficients; the solution is obtained by combining factorization and functional equations. Then, the influence of the various geometrical and flow parameters is presented and discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Duffy, D.G.: Mixed Boundary Value Problems. Chapman & Hall/CRC, Boca Raton (2008)CrossRefGoogle Scholar
  2. 2.
    Eckert, E.R.G., Drake, R.M.: Analysis of Heat and Mass Transfer. McGraw Hill, New York (1972)zbMATHGoogle Scholar
  3. 3.
    Lavrentiev, M., Shabat, B.: Methods of the Theory of Functions of a Complex Variable. Moscow: Nauka (Russian). German translation: Lawrentjew M, Shabat B 1967 Methoden der komplexen Funktionentheorie. VEB Deutscher Verlag der Wiss., Berlin (1987)Google Scholar
  4. 4.
    Leontiou, T., Ikram, M., Beketayev, K., Fyrillas, M.M.: Heat transfer enhancement of a periodic array of isothermal pipes Int. J. Therm. Sci. 104, 480–488 (2016).  https://doi.org/10.1016/j.ijthermalsci.2016.02.001 CrossRefGoogle Scholar
  5. 5.
    Mityushev, V.V., Rogosin, S.V.: Constructive Methods for Linear and Nonlinear Boundary Value Problems for Analytic Functions: Theory and Applications. Chapman & Hall / CRC, Boca Raton (2000)zbMATHGoogle Scholar
  6. 6.
    Polubarinova-Kochina, P.Y.: Theory of Ground Water Movement. Princeton Univ. Press, Princeton (1962). (Second Edition published in 1977 by Nauka, Moscow, in Russian)zbMATHGoogle Scholar
  7. 7.
    Kacimov, A.R.: Circular isobaric cavity in descending unsaturated flow. J. Irrig. Drain. Eng. (ASCE) 126(3), 172–178 (2000)CrossRefGoogle Scholar
  8. 8.
    Vasil’ev, V.A.: On the shape of a groundwater mound with infiltration between two drains on an impermeable layer. Prikladnaya Matematika i Mekhanika (PMM) 19, 106–108 (1955). (in Russian)Google Scholar
  9. 9.
    Keldysh, M.V., Sedov, L.I.: Effective solution to some boundary value problems for harmonic functions. Doklady AN SSSR 16, 7–10 (1937)zbMATHGoogle Scholar
  10. 10.
    Khan, S., Rushton, K.R.: Reappraisal of flow to tile drains. I. Steady state response. J. Hydrol. 183, 351–366 (1996)CrossRefGoogle Scholar
  11. 11.
    Gakhov, F.D.: Boundary Value Problems. 3rd edn. Nauka , Moscow (in Russian) (1977); Engl. transl. of 1st ed. Pergamon Press, Oxford (1966)Google Scholar
  12. 12.
    Obnosov, Y.V.: Solution of a mixed boundary value problem of the theory of analytic functions. Izv. Vyssh. Uchebn. Zaved. Mat. 10, 73–75 (1981)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Rylko, N.: A pair of perfectly conducting disks in an external field. Math. Model. Anal. 20, 273–288 (2015).  https://doi.org/10.3846/13926292.2015.1022236 MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mityushev, V.: Mixed problem for Laplace’s equation in an arbitrary circular multiply connected domain. In: Dryga, P., Rogosin, S., Birkhauzer, (eds.) Modern Problems in Applied Analysis, pp. 135–152. Springer, Cham (2018)CrossRefGoogle Scholar
  15. 15.
    Mityushev, V., Adler, P.: Longitudinal permeability of a doubly periodic rectangular array of circular cylinders, I. ZAMM 82, 335–345 (2002)CrossRefGoogle Scholar
  16. 16.
    Mityushev, V., Adler, P.: Longitudinal permeability of a doubly periodic rectangular array of circular cylinders, II. ZAMP 53, 486–517 (2002)zbMATHGoogle Scholar
  17. 17.
    Gluzman, S., Mityushev, V., Nawalaniec, W.: Computational Analysis of Structured Media. Elsevier, Amsterdam (2017)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mathematics, Physics-Technology DepartmentPedagogical UniversityKrakówPoland
  2. 2.MetisSorbonne UniversitéParis Cedex 05France

Personalised recommendations