Advertisement

Coupling effect of surface energy and dispersion forces on nonlinear size-dependent pull-in instability of functionally graded micro-/nanoswitches

  • Mohamed A. Attia
  • Salwa A. Mohamed
Original Paper
  • 26 Downloads

Abstract

In this paper, an integrated nonclassical multi-physics model is developed to study the coupling effect of surface energy and local microstructure on the nonlinear size-dependent pull-in instability of electrostatically actuated functionally graded material (FGM) micro-/nanoswitches. The developed model incorporates the influences of fringing field, dispersion Casimir or van der Waals force in addition to residual axial stress and mid-plane stretching. For more accurate analysis of the FGM switches, a nonclassical beam model is developed based on the Euler–Bernoulli beam theory in conjunction with the modified couple stress theory and Gurtin–Murdoch surface elasticity theory to account for the size dependency and surface energy effects, respectively. Material properties of both bulk and surface layers of the FGM switch are assumed to vary according to a power law distribution through thickness. To this end, the Hamilton principle is employed to derive the nonlinear size-dependent governing integral–differential equations and the associated nonclassical boundary conditions, without neglecting any terms raised by surface energy. The size-dependent relations are derived in general form, which can be reduced to those based on different elasticity theories, including surface energy theory, modified couple stress and classical theories. The resulting nonlinear integral–differential equations are solved utilizing the generalized differential/integral quadrature method, in which the nonclassical boundary conditions are exactly implemented for different immovable ends. The obtained results are compared with the results available in the literature to valid the efficiency of the present solution method. A numerical analysis reveals that the nonlinear pull-in voltage of FGM micro-/nanoswitches is significantly influenced by the FGM’s gradient index, length scale parameter, surface energy, residual axial stress, initial gap, slenderness ratio, and dispersion forces for different immovable boundary conditions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    Kitamura, T., Hirakata, H., Satake, Y.: Applicability of fracture mechanics on brittle delamination of nanoscale film edge. JSME Int. J. Ser. A Solid Mech. Mater. Eng. 47, 106–112 (2004)CrossRefGoogle Scholar
  2. 2.
    Poole, W., Ashby, M., Fleck, N.: Micro-hardness of annealed and work-hardened copper polycrystals. Scr. Mater. 34, 559–564 (1996)CrossRefGoogle Scholar
  3. 3.
    Abdel-Rahman, E.M., Younis, M.I., Nayfeh, A.H.: Characterization of the mechanical behavior of an electrically actuated microbeam. J. Micromech. Microeng. 12, 759 (2002)CrossRefGoogle Scholar
  4. 4.
    Yang, W., Kang, W., Wang, X.: Scale-dependent pull-in instability of functionally graded carbon nanotubes-reinforced piezoelectric tuning nano-actuator considering finite temperature and conductivity corrections of Casimir force. Compos. Struct. 176, 460–470 (2017)CrossRefGoogle Scholar
  5. 5.
    Rebeiz, G.M.: RF MEMS Theory, Design and Applications. Wiley, New Jersey (2003)Google Scholar
  6. 6.
    Ghalambaz, M., Ghalambaz, M., Edalatifar, M.: Nonlinear oscillation of nanoelectro-mechanical resonators using energy balance method: considering the size effect and the van der Waals force. Appl. Nanosci. 6, 309–317 (2016)CrossRefGoogle Scholar
  7. 7.
    Hasanyan, D.J., Batra, R., Harutyunyan, S.: Pull-in instabilities in functionally graded microthermoelectromechanical systems. J. Therm. Stress. 31, 1006–1021 (2008)CrossRefGoogle Scholar
  8. 8.
    Gupta, A., Talha, M.: Recent development in modeling and analysis of functionally graded materials and structures. Prog. Aerosp. Sci. 79, 1–14 (2015)CrossRefGoogle Scholar
  9. 9.
    Nix, W.D.: Mechanical properties of thin films. Metall. Trans. A 20(11), 2217 (1989)CrossRefGoogle Scholar
  10. 10.
    Lam, D.C., Chong, A.C.: Indentation model and strain gradient plasticity law for glassy polymers. J. Mater. Res. 14, 3784–3788 (1999)CrossRefGoogle Scholar
  11. 11.
    Yang, F., Chong, A., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)zbMATHCrossRefGoogle Scholar
  12. 12.
    Rahaeifard, M., Kahrobaiyan, M., Asghari, M., Ahmadian, M.: Static pull-in analysis of microcantilevers based on the modified couple stress theory. Sens. Actuators A Phys. 171, 370–374 (2011)zbMATHCrossRefGoogle Scholar
  13. 13.
    Rahaeifard, M., Kahrobaiyan, M., Ahmadian, M., Firoozbakhsh, K.: Size-dependent pull-in phenomena in nonlinear microbridges. Int. J. Mech. Sci. 54, 306–310 (2012)CrossRefGoogle Scholar
  14. 14.
    Yin, L., Qian, Q., Wang, L.: Size effect on the static behavior of electrostatically actuated microbeams. Acta Mech. Sin. 27, 445 (2011)zbMATHCrossRefGoogle Scholar
  15. 15.
    Zhang, J., Fu, Y.: Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory. Meccanica 47, 1649–1658 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Baghani, M.: Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory. Int. J. Eng. Sci. 54, 99–105 (2012)zbMATHCrossRefGoogle Scholar
  17. 17.
    Kong, S.: Size effect on pull-in behavior of electrostatically actuated microbeams based on a modified couple stress theory. Appl. Math. Model. 37, 7481–7488 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Rokni, H., Seethaler, R.J., Milani, A.S., Hosseini-Hashemi, S., Li, X.-F.: Analytical closed-form solutions for size-dependent static pull-in behavior in electrostatic micro-actuators via Fredholm integral equation. Sens. Actuators A Phys. 190, 32–43 (2013)CrossRefGoogle Scholar
  19. 19.
    Ghayesh, M.H., Farokhi, H., Amabili, M.: Nonlinear behaviour of electrically actuated MEMS resonators. Int. J. Eng. Sci. 71, 137–155 (2013)zbMATHCrossRefGoogle Scholar
  20. 20.
    Beni, Y.T., Karimipöur, I., Abadyan, M.: Modeling the effect of intermolecular force on the size-dependent pull-in behavior of beam-type NEMS using modified couple stress theory. J. Mech. Sci. Technol. 28, 3749–3757 (2014)CrossRefGoogle Scholar
  21. 21.
    Liang, B., Zhang, L., Wang, B., Zhou, S.: A variational size-dependent model for electrostatically actuated NEMS incorporating nonlinearities and Casimir force. Phys. E Low Dimens. Syst. Nanostruct. 71, 21–30 (2015)CrossRefGoogle Scholar
  22. 22.
    Fakhrabadi, M.M.S.: Prediction of small-scale effects on nonlinear dynamic behaviors of carbon nanotube-based nano-resonators using consistent couple stress theory. Compos. Part B Eng. 88, 26–35 (2016)CrossRefGoogle Scholar
  23. 23.
    Farokhi, H., Ghayesh, M.H.: Size-dependent behaviour of electrically actuated microcantilever-based MEMS. Int. J. Mech. Mater. Des. 12, 301–315 (2016)CrossRefGoogle Scholar
  24. 24.
    Attia, M.A., Rahman, A.A.: On vibrations of functionally graded viscoelastic nanobeams with surface effects. Int. J. Eng. Sci. 127, 1–32 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    SoltanRezaee, M., Afrashi, M.: Modeling the nonlinear pull-in behavior of tunable nano-switches. Int. J. Eng. Sci. 109, 73–87 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Attia, M.A.: Investigation of size-dependent quasistatic response of electrically actuated nonlinear viscoelastic microcantilevers and microbridges. Meccanica 52, 2391–2420 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Attia, M.A., Mohamed, S.A.: Nonlinear modeling and analysis of electrically actuated viscoelastic microbeams based on the modified couple stress theory. Appl. Math. Model. 41, 195–222 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Attia, M.A., Emam, S.A.: Electrostatic nonlinear bending, buckling and free vibrations of viscoelastic microbeams based on the modified couple stress theory. Acta Mech. 229, 3235–3255 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Peng, J., Yang, L., Lin, F., Yang, J.: Dynamic analysis of size-dependent micro-beams with nonlinear elasticity under electrical actuation. Appl. Math. Model. 43, 441–453 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Askari, A.R., Tahani, M.: Size-dependent dynamic pull-in analysis of beam-type MEMS under mechanical shock based on the modified couple stress theory. Appl. Math. Model. 39, 934–946 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Ding, N., Xu, X., Zheng, Z., Li, E.: Size-dependent nonlinear dynamics of a microbeam based on the modified couple stress theory. Acta Mech. 228, 3561–3579 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Dai, H., Wang, L.: Size-dependent pull-in voltage and nonlinear dynamics of electrically actuated microcantilever-based MEMS: a full nonlinear analysis. Commun. Nonlinear Sci. Numer. Simul. 46, 116–125 (2017)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Li, L., Zhang, Q., Wang, W., Han, J.: Dynamic analysis and design of electrically actuated viscoelastic microbeams considering the scale effect. Int. J. Non-Linear Mech. 90, 21–31 (2017)CrossRefGoogle Scholar
  34. 34.
    Mojahedi, M.: Size dependent dynamic behavior of electrostatically actuated microbridges. Int. J. Eng. Sci. 111, 74–85 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Fakhrabadi, M.M.S., Rastgoo, A., Ahmadian, M.T., Mashhadi, M.M.: Dynamic analysis of carbon nanotubes under electrostatic actuation using modified couple stress theory. Acta Mech. 225(6), 1523–1535 (2014)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Zamanzadeh, M., Rezazadeh, G., Jafarsadeghi-Poornaki, I., Shabani, R.: Static and dynamic stability modeling of a capacitive FGM micro-beam in presence of temperature changes. Appl. Math. Model. 37, 6964–6978 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Abbasnejad, B., Rezazadeh, G., Shabani, R.: Stability analysis of a capacitive fgm micro-beam using modified couple stress theory. Acta Mech. Solida Sin. 26, 427–440 (2013)CrossRefGoogle Scholar
  38. 38.
    Zare, J.: Pull-in behavior analysis of vibrating functionally graded micro-cantilevers under suddenly DC voltage. J. Appl. Comput. Mech. 1, 17–25 (2014)Google Scholar
  39. 39.
    Li, Y., Meguid, S., Fu, Y., Xu, D.: Nonlinear analysis of thermally and electrically actuated functionally graded material microbeam. Proc. R. Soc. A 470, 20130473 (2014)zbMATHCrossRefGoogle Scholar
  40. 40.
    Sedighi, H.M., Daneshmand, F., Abadyan, M.: Modeling the effects of material properties on the pull-in instability of nonlocal functionally graded nano-actuators. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 96, 385–400 (2016)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Gholami, R., Ansari, R., Rouhi, H.: Studying the effects of small scale and Casimir force on the non-linear pull-in instability and vibrations of FGM microswitches under electrostatic actuation. Int. J. Non-Linear Mech. 77, 193–207 (2015)CrossRefGoogle Scholar
  42. 42.
    Jia, X., Zhang, S., Ke, L., Yang, J., Kitipornchai, S.: Thermal effect on the pull-in instability of functionally graded micro-beams subjected to electrical actuation. Compos. Struct. 116, 136–146 (2014)CrossRefGoogle Scholar
  43. 43.
    Ataei, H., Beni, Y.T.: Size-dependent pull-in instability of electrically actuated functionally graded nano-beams under intermolecular forces. Iran. J. Sci. Technol. Trans. Mech. Eng. 40, 289–301 (2016)CrossRefGoogle Scholar
  44. 44.
    Liu, J., Sun, J., Zuo, P.: Towards understanding why the thin membrane transducer deforms: surface stress-induced buckling. Acta Mech. Solida Sin. 29, 192–199 (2016)CrossRefGoogle Scholar
  45. 45.
    Shojaeian, M., Zeighampour, H.: Size dependent pull-in behavior of functionally graded sandwich nanobridges using higher order shear deformation theory. Compos. Struct. 143, 117–129 (2016)CrossRefGoogle Scholar
  46. 46.
    Gurtin, M., Weissmüller, J., Larche, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78, 1093–1109 (1998)CrossRefGoogle Scholar
  47. 47.
    He, L., Lim, C., Wu, B.: A continuum model for size-dependent deformation of elastic films of nano-scale thickness. Int. J. Solids Struct. 41, 847–857 (2004)zbMATHCrossRefGoogle Scholar
  48. 48.
    Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)zbMATHCrossRefGoogle Scholar
  50. 50.
    Ma, J.B., Jiang, L., Asokanthan, S.F.: Influence of surface effects on the pull-in instability of NEMS electrostatic switches. Nanotechnology 21, 505708 (2010)CrossRefGoogle Scholar
  51. 51.
    Fu, Y., Zhang, J.: Size-dependent pull-in phenomena in electrically actuated nanobeams incorporating surface energies. Appl. Math. Model. 35, 941–951 (2011)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Duan, J.-S., Rach, R.: A pull-in parameter analysis for the cantilever NEMS actuator model including surface energy, fringing field and Casimir effects. Int. J. Solids Struct. 50, 3511–3518 (2013)CrossRefGoogle Scholar
  53. 53.
    Sedighi, H.M.: The influence of small scale on the pull-in behavior of nonlocal nanobridges considering surface effect, Casimir and Van der Waals attractions. Int. J. Appl. Mech. 6, 1450030 (2014)CrossRefGoogle Scholar
  54. 54.
    Yang, F., Wang, G.-F., Long, J.-M., Wang, B.-L.: Influence of surface energy on the pull-in instability of electrostatic nano-switches. J. Comput. Theor. Nanosci. 10, 1273–1277 (2013)CrossRefGoogle Scholar
  55. 55.
    Wang, K., Wang, B.: Influence of surface energy on the non-linear pull-in instability of nano-switches. Int. J. Non-Linear Mech. 59, 69–75 (2014)CrossRefGoogle Scholar
  56. 56.
    Wang, K., Wang, B.: A general model for nano-cantilever switches with consideration of surface effects and nonlinear curvature. Phys. E Low Dimens. Syst. Nanostruct. 66, 197–208 (2015)CrossRefGoogle Scholar
  57. 57.
    Yang, W., Wang, X., Fang, C.: Pull-in instability of carbon nanotube-reinforced nano-switches considering scale, surface and thermal effects. Compos. Part B Eng. 82, 143–151 (2015)CrossRefGoogle Scholar
  58. 58.
    Mohebshahedin, A., Farrokhabadi, A.: The influence of the surface energy on the instability behavior of NEMS structures in presence of intermolecular attractions. Int. J. Mech. Sci. 101, 437–448 (2015)CrossRefGoogle Scholar
  59. 59.
    Miandoab, E.M., Pishkenari, H.N., Meghdari, A.: Effect of surface energy on nano-resonator dynamic behavior. Int. J. Mech. Sci. 119, 51–58 (2016)CrossRefGoogle Scholar
  60. 60.
    Liu, C.-C.: Dynamic behavior analysis of cantilever-type nano-mechanical electrostatic actuator. Int. J. Non-Linear Mech. 82, 124–130 (2016)CrossRefGoogle Scholar
  61. 61.
    Farrokhabadi, A., Mohebshahedin, A., Rach, R., Duan, J.-S.: An improved model for the cantilever NEMS actuator including the surface energy, fringing field and Casimir effects. Phys. E Low Dimens. Syst. Nanostruct. 75, 202–209 (2016)CrossRefGoogle Scholar
  62. 62.
    Wang, K., Zeng, S., Wang, B.: Large amplitude free vibration of electrically actuated nanobeams with surface energy and thermal effects. Int. J. Mech. Sci. 131, 227–233 (2017)CrossRefGoogle Scholar
  63. 63.
    Sedighi, H.M., Keivani, M., Abadyan, M.: Modified continuum model for stability analysis of asymmetric FGM double-sided NEMS: corrections due to finite conductivity, surface energy and nonlocal effect. Compos. Part B Eng. 83, 117–133 (2015)CrossRefGoogle Scholar
  64. 64.
    Zare, J.: Pull-in behavior analysis of vibrating functionally graded micro-cantilevers under suddenly DC voltage. J. Appl. Comput. Mech. 1(1), 17–25 (2014)Google Scholar
  65. 65.
    Shaat, M., Mohamed, S.A.: Nonlinear-electrostatic analysis of micro-actuated beams based on couple stress and surface elasticity theories. Int. J. Mech. Sci. 84, 208–217 (2014)CrossRefGoogle Scholar
  66. 66.
    Shaat, M., Abdelkefi, A.: Material structure and size effects on the nonlinear dynamics of electrostatically-actuated nano-beams. Int. J. Non-Linear Mech. 89, 25–42 (2017)CrossRefGoogle Scholar
  67. 67.
    Sedighi, H.M., Bozorgmehri, A.: Dynamic instability analysis of doubly clamped cylindrical nanowires in the presence of Casimir attraction and surface effects using modified couple stress theory. Acta Mech. 227, 1575–1591 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Sedighi, H.M.: The influence of small scale on the pull-in behavior of nonlocal nanobridges considering surface effect, Casimir and Van der Waals attractions. Int. J. Appl. Mech. 6(03), 22 (2014).  https://doi.org/10.1142/S1758825114500306 CrossRefGoogle Scholar
  69. 69.
    Koochi, A., Hosseini-Toudeshky, H., Abadyan, M.: Nonlinear beam formulation incorporating surface energy and size effect: application in nano-bridges. Appl. Math. Mech. 37, 583–600 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Keivani, M., Koochi, A., Kanani, A., Mardaneh, M.R., Sedighi, H.M., Abadyan, M.: Using strain gradient elasticity in conjunction with Gurtin–Murdoch theory for modeling the coupled effects of surface and size phenomena on the instability of narrow nano-switch. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 231, 3277–3288 (2017)CrossRefGoogle Scholar
  71. 71.
    SoltanRezaee, M., Farrokhabadi, A., Ghazavi, M.R.: The influence of dispersion forces on the size-dependent pull-in instability of general cantilever nano-beams containing geometrical non-linearity. Int. J. Mech. Sci. 119, 114–124 (2016)CrossRefGoogle Scholar
  72. 72.
    Kambali, P.N., Nikhil, V., Pandey, A.K.: Surface and nonlocal effects on response of linear and nonlinear NEMS devices. Appl. Math. Model. 43, 252–267 (2017)MathSciNetCrossRefGoogle Scholar
  73. 73.
    Mirkalantari, S.A., Hashemian, M., Eftekhari, S.A., Toghraie, D.: Pull-in instability analysis of rectangular nanoplate based on strain gradient theory considering surface stress effects. Phys. B Condens. Matter 519, 1–14 (2017)CrossRefGoogle Scholar
  74. 74.
    Wang, K., Wang, B., Zhang, C.: Surface energy and thermal stress effect on nonlinear vibration of electrostatically actuated circular micro-/nanoplates based on modified couple stress theory. Acta Mech. 228, 129–140 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    Attia, M.A., Mohamed, S.A.: Pull-in instability of functionally graded cantilever nanoactuators incorporating effects of microstructure, surface energy and intermolecular forces. Int. J. Appl. Mech. 10(8), 1850091 (2018).  https://doi.org/10.1142/S1758825118500916 MathSciNetCrossRefGoogle Scholar
  76. 76.
    Şimşek, M., Reddy, J.: Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. Int. J. Eng. Sci. 64, 37–53 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Şimşek, M.: Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach. Int. J. Eng. Sci. 105, 12–27 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    Lü, C.F., Lim, C.W., Chen, W.: Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory. Int. J. Solids Struct. 46, 1176–1185 (2009)zbMATHCrossRefGoogle Scholar
  79. 79.
    Attia, M.A., Mahmoud, F.F.: Modeling and analysis of nanobeams based on nonlocal-couple stress elasticity and surface energy theories. Int. J. Mech. Sci. 105, 126–134 (2016)CrossRefGoogle Scholar
  80. 80.
    Attia, M.A.: On the mechanics of functionally graded nanobeams with the account of surface elasticity. Int. J. Eng. Sci. 115, 73–101 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    Zhao, J., Zhou, S., Wang, B., Wang, X.: Nonlinear microbeam model based on strain gradient theory. Appl. Math. Model. 36(6), 2674–2686 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    Osterberg, P.M., Senturia, S.D.: M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J. Microelectromech. Syst. 6, 107–118 (1997)CrossRefGoogle Scholar
  83. 83.
    Guo, J.-G., Zhao, Y.-P.: Influence of van der Waals and Casimir forces on electrostatic torsional actuators. J. Microelectromech. Syst. 13, 1027–1035 (2004)CrossRefGoogle Scholar
  84. 84.
    Soroush, R., Koochi, A., Kazemi, A., Noghrehabadi, A., Haddadpour, H., Abadyan, M.: Investigating the effect of Casimir and van der Waals attractions on the electrostatic pull-in instability of nano-actuators. Phys. Scr. 82, 045801 (2010)zbMATHCrossRefGoogle Scholar
  85. 85.
    Batra, R., Porfiri, M., Spinello, D.: Review of modeling electrostatically actuated microelectromechanical systems. Smart Mater. Struct. 16, R23 (2007)CrossRefGoogle Scholar
  86. 86.
    Ramezani, A., Alasty, A., Akbari, J.: Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surface forces. Int. J. Solids Struct. 44(14–15), 4925–4941 (2007)zbMATHCrossRefGoogle Scholar
  87. 87.
    Yang, J., Jia, X.L., Kitipornchai, S.: Pull-in instability of nano-switches using nonlocal elasticity theory. J. Phys. D Appl. Phys. 41(3), 035103 (2008)CrossRefGoogle Scholar
  88. 88.
    Jia, X.L., Yang, J., Kitipornchai, S.: Pull-in instability of geometrically nonlinear micro-switches under electrostatic and Casimir forces. Acta Mech. 218(1–2), 161–174 (2011)zbMATHCrossRefGoogle Scholar
  89. 89.
    Bhojawala, V.M., Vakharia, D.P.: Closed-form relation to predict static pull-in voltage of an electrostatically actuated clamped–clamped microbeam under the effect of Casimir force. Acta Mech. 228(7), 2583–2602 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Ramezani, A., Alasty, A.: Combined action of Casimir and electrostatic forces on nanocantilever arrays. Acta Mech. 212(3–4), 305–317 (2010)zbMATHCrossRefGoogle Scholar
  91. 91.
    Harsha, S., Prasanth, C.S., Pratiher, B.: Prediction of pull-in phenomena and structural stability analysis of an electrostatically actuated microswitch. Acta Mech. 227(9), 2577–2594 (2016)CrossRefGoogle Scholar
  92. 92.
    Rahaeifard, M., Ahmadian, M., Firoozbakhsh, K.: Vibration analysis of electrostatically actuated nonlinear microbridges based on the modified couple stress theory. Appl. Math. Model. 39, 6694–6704 (2015)MathSciNetCrossRefGoogle Scholar
  93. 93.
    Shu, C.: Differential Quadrature and Its Application in Engineering. Springer, Berlin (2012)Google Scholar
  94. 94.
    Shanab, R.A., Attia, M.A., Mohamed, S.A.: Nonlinear analysis of functionally graded nanoscale beams incorporating the surface energy and microstructure effects. Int. J. Mech. Sci. 131, 908–923 (2017)CrossRefGoogle Scholar
  95. 95.
    Mohamed, N., Eltaher, M.A., Mohamed, S.A., Seddek, L.F.: Numerical analysis of nonlinear free and forced vibrations of buckled curved beams resting on nonlinear elastic foundations. Int. J. Non-Linear Mech. 101, 157–173 (2018)CrossRefGoogle Scholar
  96. 96.
    Zhang, Y., Ren, Q., Zhao, Y.-P.: Modelling analysis of surface stress on a rectangular cantilever beam. J. Phys. D Appl. Phys. 37, 2140 (2004)CrossRefGoogle Scholar
  97. 97.
    Yang, W., Wang, X.: Nonlinear pull-in instability of carbon nanotubes reinforced nano-actuator with thermally corrected Casimir force and surface effect. Int. J. Mech. Sci. 107, 34–42 (2016)CrossRefGoogle Scholar
  98. 98.
    Tilmans, H.A., Legtenberg, R.: Electrostatically driven vacuum-encapsulated polysilicon resonators: part II. Theory and performance. Sens. Actuators A Phys. 45, 67–84 (1994)CrossRefGoogle Scholar
  99. 99.
    Haluzan, D.T., Klymyshyn, D.M., Achenbach, S., Börner, M.: Reducing pull-in voltage by adjusting gap shape in electrostatically actuated cantilever and fixed-fixed beams. Micromachines 1, 68–81 (2010)CrossRefGoogle Scholar
  100. 100.
    Osterberg, P.M.: Electrostatically Actuated Microelectromechanical Test Structures for Material Property Measurement. Massachusetts Institute of Technology, Cambridge (1995)Google Scholar
  101. 101.
    Pamidighantam, S., Puers, R., Baert, K., Tilmans, H.A.: Pull-in voltage analysis of electrostatically actuated beam structures with fixed-fixed and fixed-free end conditions. J. Micromech. Microeng. 12, 458 (2002)CrossRefGoogle Scholar
  102. 102.
    Miandoab, E.M., Pishkenari, H.N., Meghdari, A., Fathi, M.: A general closed-form solution for the static pull-in voltages of electrostatically actuated MEMS/NEMS. Phys. E Low Dimens. Syst. Nanostruct. 90, 7–12 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mechanical Design and Production Engineering DepartmentFaculty of Engineering, Zagazig UniversityZagazigEgypt
  2. 2.Engineering Mathematics DepartmentFaculty of Engineering, Zagazig UniversityZagazigEgypt
  3. 3.Department of Mechanical Engineering, College of EngineeringShaqra UniversityDawadmiSaudi Arabia

Personalised recommendations