Acta Mechanica

, Volume 230, Issue 11, pp 4109–4124 | Cite as

Mechanics of structure genome-based global buckling analysis of stiffened composite panels

  • Ning Liu
  • Wenbin YuEmail author
  • Dewey H. Hodges
Original Paper


Stiffened panels buckle under compressive loads which would degrade load-bearing capabilities of the structures. Fast yet accurate estimations of buckling loads and associated mode shapes are critical in the early stages of design and optimization. This paper presents a method based on the mechanics of structure genome (MSG) for the global buckling analysis of stiffened composite panels. The original geometrically nonlinear problem is mathematically reduced to a geometrically linear constitutive modeling of the structure genome and a geometrically nonlinear formulation of the macroscopic plate analysis. Validation case studies show that MSG is highly accurate and efficient as compared to the detailed finite element analysis. The buckling behaviors of stiffened panels under various boundary conditions and loadings are investigated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Zheng, Q., Jiang, D., Huang, C., Shang, X., Ju, S.: Analysis of failure loads and optimal design of composite lattice cylinder under axial compression. Compos. Struct. 131, 885 (2015)Google Scholar
  2. 2.
    Lopatin, A., Morozov, E.: Buckling of the composite sandwich cylindrical shell with clamped ends under uniform external pressure. Compos. Struct. 122, 209 (2015)Google Scholar
  3. 3.
    Wodesenbet, E., Kidane, S., Pang, S.S.: Optimization for buckling loads of grid stiffened composite panels. Compos. Struct. 60(2), 159 (2003)Google Scholar
  4. 4.
    Fenner, P.E.: Finite element buckling analysis of stiffened plates with filleted junctions. Thin-Walled Struct. 59, 171 (2012)Google Scholar
  5. 5.
    Bisagni, C., Vescovini, R.: Analytical formulation for local buckling and post-buckling analysis of stiffened laminated panels. Thin-Walled Struct. 47(3), 318 (2009)Google Scholar
  6. 6.
    Stamatelos, D., Labeas, G., Tserpes, K.: Analytical calculation of local buckling and post-buckling behavior of isotropic and orthotropic stiffened panels. Thin-Walled Struct. 49(3), 422 (2011)Google Scholar
  7. 7.
    Szilard, R.: Theories and Applications of Plate Analysis: Classical Numerical and Engineering Methods. Wiley, Hoboken (2004)Google Scholar
  8. 8.
    Chen, H.J., Tsai, S.W.: Analysis and optimum design of composite grid structures. J. Compos. Mater. 30(4), 503 (1996)Google Scholar
  9. 9.
    Sadeghifar, M.: Buckling analysis of stringer-stiffened laminated cylindrical shells with nonuniform eccentricity. Arch. Appl. Mech. 81(7), 875 (2011)zbMATHGoogle Scholar
  10. 10.
    Jaunky, N., Knight, N.F., Ambur, D.R.: Formulation of an improved smeared stiffener theory for buckling analysis of grid-stiffened composite panels. Compos. Part B 27(5), 519 (1996)Google Scholar
  11. 11.
    Byklum, E., Steen, E., Amdahl, J.: A semi-analytical model for global buckling and postbuckling analysis of stiffened panels. Thin-Walled Struct. 42(5), 701 (2004)Google Scholar
  12. 12.
    Kidane, S., Li, G., Helms, J., Pang, S.S., Woldesenbet, E.: Buckling load analysis of grid stiffened composite cylinders. Compos. Part B 34(1), 1 (2003)Google Scholar
  13. 13.
    Xu, Y., Tong, Y., Liu, M., Suman, B.: A new effective smeared stiffener method for global buckling analysis of grid stiffened composite panels. Compos. Struct. 158, 83 (2016)Google Scholar
  14. 14.
    Ren, M., Li, T., Huang, Q., Wang, B.: Numerical investigation into the buckling behavior of advanced grid stiffened composite cylindrical shell. J. Reinf. Plast. Compos. 33(16), 1508 (2014)Google Scholar
  15. 15.
    Wang, B., Tian, K., Hao, P., Zheng, Y., Ma, Y., Wang, J.: Numerical-based smeared stiffener method for global buckling analysis of grid-stiffened composite cylindrical shells. Compos. Struct. 152, 807 (2016)Google Scholar
  16. 16.
    Ninh, D.G., Bich, D.H., Kien, B.H.: Torsional buckling and post-buckling behavior of eccentrically stiffened functionally graded toroidal shell segments surrounded by an elastic medium. Acta Mech. 226(10), 3501 (2015)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Bich, D.H., Ninh, D.G.: Research on dynamical buckling of imperfect stiffened three-layered toroidal shell segments containing fluid under mechanical loads. Acta Mech. 228(2), 711 (2017)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Dung, D., Nga, N.: Buckling and postbuckling nonlinear analysis of imperfect FGM plates reinforced by FGM stiffeners with temperature-dependent properties based on TSDT. Acta Mech. 227(8), 2377 (2016)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Dung, D., Hoai, B., Hoa, L.: Postbuckling nonlinear analysis of FGM truncated conical shells reinforced by orthogonal stiffeners resting on elastic foundations. Acta Mech. 228(4), 1457 (2017)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Chan, D., Dung, D., Hoa, L.: Thermal buckling analysis of stiffened FGM truncated conical shells resting on elastic foundations using FSDT. Acta Mech. 229(5), 2221 (2018)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Hassani, B., Hinton, E.: A review of homogenization and topology optimization I: homogenization theory for media with periodic structure. Comput. Struct. 69(6), 707 (1998)zbMATHGoogle Scholar
  22. 22.
    Kwon, Y.W., Allen, D.H., Talreja, R.: Multiscale Modeling and Simulation of Composite Materials and Structures. Springer, New York (2008)zbMATHGoogle Scholar
  23. 23.
    Kalamkarov, A.L., Andrianov, I.V., Danishevs’kyy, V.V.: Asymptotic homogenization of composite materials and structures. Appl. Mech. Rev. 62(3), 030802 (2009)Google Scholar
  24. 24.
    Challagulla, K., Georgiades, A., Kalamkarov, A.: Asymptotic homogenization modeling of smart composite generally orthotropic grid-reinforced shells: part I theory. Eur. J. Mech. A Solids 29(4), 530 (2010)MathSciNetGoogle Scholar
  25. 25.
    Wang, D., Abdalla, M.M.: Global and local buckling analysis of grid-stiffened composite panels. Compos. Struct. 119, 767 (2015)Google Scholar
  26. 26.
    Yu, W.: A unified theory for constitutive modeling of composites. J. Mech. Mater. Struct. 11(4), 379 (2016)MathSciNetGoogle Scholar
  27. 27.
    Liu, X., Yu, W.: A novel approach to analyze beam-like composite structures using mechanics of structure genome. Adv. Eng. Softw. 100, 238 (2016)Google Scholar
  28. 28.
    Peng, B., Goodsell, J., Pipes, R.B., Yu, W.: Generalized free-edge stress analysis using mechanics of structure genome. J. Appl. Mech. 83(10), 101013 (2016)Google Scholar
  29. 29.
    Liu, N., Yu, W.: Evaluation of smeared properties approaches and mechanics of structure genome for analyzing composite beams. Mech. Adv. Mater. Struct. 25, 1–15 (2017)MathSciNetGoogle Scholar
  30. 30.
    Rouf, K., Liu, X., Yu, W.: Multiscale structural analysis of textile composites using mechanics of structure genome. Int. J. Solids Struct. 89, 136–137 (2018)Google Scholar
  31. 31.
    Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357 (1963)zbMATHGoogle Scholar
  32. 32.
    Zhang, D., Waas, A.M.: A micromechanics based multiscale model for nonlinear composites. Acta Mech. 225(4–5), 1391 (2014)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Allaire, G., Brizzi, R.: A multiscale finite element method for numerical homogenization. Multiscale Model. Simul. 4(3), 790 (2005)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Yang, D., Zhang, H., Zhang, S., Lu, M.: A multiscale strategy for thermo-elastic plastic stress analysis of heterogeneous multiphase materials. Acta Mech. 226(5), 1549 (2015)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Efendiev, Y., Hou, T.Y.: Multiscale Finite Element Methods Theory and Applications. Springer, Berlin (2009)zbMATHGoogle Scholar
  36. 36.
    Hou, T., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169 (1997)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Yu, W., Hodges, D.H., Volovoi, V.V.: Asymptotic construction of Reissner-like composite plate theory with accurate strain recovery. Int. J. Solids Struct. 39(20), 5185 (2002)zbMATHGoogle Scholar
  38. 38.
    Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Applications. AMS Chelsea Publishing, Providence (1978)zbMATHGoogle Scholar
  39. 39.
    Danielson, D.A., Hodges, D.H.: Nonlinear beam kinematics by decomposition of the rotation tensor. J. Appl. Mech. 54(2), 258 (1987)zbMATHGoogle Scholar
  40. 40.
    Yu, W., Hodges, D.H., Ho, J.C.: Variational asymptotic beam sectional analysis: an updated version. Int. J. Eng. Sci. 59, 40 (2012)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Yu, W., Hodges, D.H.: A geometrically nonlinear shear deformation theory for composite shells. J. Appl. Mech. 71(1), 1 (2004)zbMATHGoogle Scholar
  42. 42.
    Pietraszkiewicz, W., Eremeyev, V.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3), 774 (2009)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Cosserat, E., Cosserat, F., et al.: Théorie des corps déformables (1909)Google Scholar
  44. 44.
    Yu, W., Hodges, D.H., Volovoi, V.V.: Asymptotic generalization of Reissner–Mindlin theory: accurate three-dimensional recovery for composite shells. Comput. Methods Appl. Mech. Eng. 191(44), 5087 (2002)zbMATHGoogle Scholar
  45. 45.
    Lopatin, A., Morozov, E.: Buckling of the SSCF rectangular orthotropic plate subjected to linearly varying in-plane loading. Compos. Struct. 93(7), 1900 (2011)Google Scholar
  46. 46.
    Shufrin, I., Rabinovitch, O., Eisenberger, M.: Buckling of symmetrically laminated rectangular plates with general boundary conditions: a semi-analytical approach. Compos. Struct. 82(4), 521 (2008)zbMATHGoogle Scholar
  47. 47.
    Meziane, M.A.A., Abdelaziz, H.H., Tounsi, A.: An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions. J. Sandw. Struct. Mater. 16(3), 293 (2014)Google Scholar
  48. 48.
    Panda, S.K., Ramachandra, L.: Buckling of rectangular plates with various boundary conditions loaded by non-uniform inplane loads. Int. J. Mech. Sci. 52(6), 819 (2010)Google Scholar
  49. 49.
    Hamedani, S.J., Ranji, A.R.: Buckling analysis of stiffened plates subjected to non-uniform biaxial compressive loads using conventional and super finite elements. Thin-Walled Struct. 64, 41 (2013)Google Scholar
  50. 50.
    Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd edn. CRC Press, Boca Raton (2004)zbMATHGoogle Scholar
  51. 51.
    Riks, E.: The application of Newton’s method to the problem of elastic stability. J. Appl. Mech. 39(4), 1060 (1972)zbMATHGoogle Scholar
  52. 52.
    Riks, E.: Some computational aspects of the stability analysis of nonlinear structures. Comput. Methods Appl. Mech. Eng. 47(3), 219 (1984)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Aeronautics and AstronauticsPurdue UniversityWest LafayetteUSA
  2. 2.Daniel Guggenheim School of Aerospace EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations