Acta Mechanica

, Volume 230, Issue 5, pp 1513–1527 | Cite as

Edge dislocation with surface flexural resistance in micropolar materials

  • Alireza Gharahi
  • Peter SchiavoneEmail author
Original Paper


We employ a micropolar surface model, capable of incorporating bending and twisting rigidities, to analyze the fundamental problem of the deformation of a micropolar half-plane containing a single-edge dislocation. The surface model is based on a Kirchhoff–Love micropolar thin shell of separate elasticity perfectly bonded to the surrounding micropolar bulk. Combining micropolar elasticity with a higher-order surface model allows for the incorporation of size effects well known to be essential in, for example, continuum-based modeling of nanostructured materials. The corresponding boundary value problems are solved analytically using Fourier integral transforms. We illustrate our results by constructing the resulting stress distributions for the most general case of a micropolar material with surface stretching, flexural, and micropolar twisting resistance. To verify our results, we show that under appropriate simplifying assumptions, our solutions reduce to the corresponding solutions in the literature from classical elasticity and also to those which employ micropolar elasticity in the absence of surface effects. Finally, we report on the significance of the contribution of the newly incorporated surface and bulk parameters on the overall solution of the micropolar edge dislocation problem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Schiavone thanks the Natural Sciences and Engineering Research Council of Canada for its support through a Discovery Grant (Grant No: RGPIN – 2017 - 03716115112).


  1. 1.
    Li, S., Wang, G.: Introduction to Micromechanics and Nanomechanics. World Scientific, Singapore (2008)CrossRefzbMATHGoogle Scholar
  2. 2.
    Eringen, A.C.: Simple microfluids. Int. J. Eng. Sci. 2(2), 205–217 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids—I. Int. J. Eng. Sci. 2(2), 189–203 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Suhubl, E.S., Eringen, A.C.: Nonlinear theory of micro-elastic solids—II. Int. J. Eng. Sci. 2(4), 389–404 (1964)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Eringen, A.C.: Continuum Physics. Volume—Polar and Nonlocal Field Theories. Academic Press, New York (1976)Google Scholar
  6. 6.
    Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15(6), 909–923 (1966)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Wang, X., Lee, J.D.: Micromorphic theory: a gateway to nano world. Int. J. Smart Nano Mater. 1(2), 115–135 (2010)CrossRefGoogle Scholar
  8. 8.
    Kaloni, P.N., Ariman, T.: Stress concentration effects in micropolar elasticity. Acta Mech. 4(3), 216–229 (1967)CrossRefzbMATHGoogle Scholar
  9. 9.
    Warren, W.E., Byskov, E.: A general solution to some plane problems of micropolar elasticity. Eur. J. Mech. A. Solids 27, 18–27 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Eringen, A.C.: Theory of micropolar plates. ZAMP 18(1), 12–30 (1967)MathSciNetGoogle Scholar
  11. 11.
    Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer, Berlin (2013)CrossRefzbMATHGoogle Scholar
  12. 12.
    Sharma, P., Dasgupta, A.: Average elastic fields and scale-dependent overall properties of heterogeneous micropolar materials containing spherical and cylindrical inhomogeneities. Phys. Rev. B 66(224110), 1–10 (2002)Google Scholar
  13. 13.
    Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)CrossRefzbMATHGoogle Scholar
  15. 15.
    Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82, 535–537 (2003)CrossRefGoogle Scholar
  16. 16.
    Tian, L., Rajapakse, R.K.N.D.: Analytical solution for size-dependent elastic field of a nanoscale circular inhomogeneity. J. Appl. Mech. 74(3), 568–574 (2007)CrossRefzbMATHGoogle Scholar
  17. 17.
    Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)CrossRefGoogle Scholar
  18. 18.
    Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53(7), 1574–1596 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mogilevskaya, S., Crouch, S., La Grotta, A., Stolarski, H.: The effects of surface elasticity and surface tension on the transverse overall elastic behavior of unidirectional nano-composites. Compos. Sci. Technol. 70(3), 427–434 (2010)CrossRefGoogle Scholar
  20. 20.
    Steigmann, D.J., Ogden, R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. A 453(1959), 853–877 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Steigmann, D.J., Ogden, R.W.: Elastic surface-substrate interactions. Proc. R. Soc. A 455(1982), 437–474 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Andreussi, F., Gurtin, M.E.: On the wrinkling of a free surface. J. Appl. Phys. 48(9), 3798–3799 (1977)CrossRefGoogle Scholar
  23. 23.
    Schiavone, P., Ru, C.Q.: Integral equation methods in plane-strain elasticity with boundary reinforcement. Proc. R. Soc. A 454, 2223–2242 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Schiavone, P., Ru, C.Q.: The traction problem in a theory of plane strain elasticity with boundary reinforcement. Math. Mech. Solids 5(1), 101–115 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Chhapadia, P., Mohammadi, P., Sharma, P.: Curvature-dependent surface energy and implications for nanostructures. J. Mech. Phys. Solids 59(10), 2103–2115 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Chen, T., Chiu, M.S.: Effects of higher-order interface stresses on the elastic states of two-dimensional composites. Mech. Mater. 43(4), 212–221 (2011)CrossRefGoogle Scholar
  27. 27.
    Benveniste, Y., Miloh, T.: Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech. Mater. 33(6), 309–323 (2001)CrossRefGoogle Scholar
  28. 28.
    Eremeyev, V.A., Lebedev, L.P.: Mathematical study of boundary-value problems within the framework of Steigmann–Ogden model of surface elasticity. Contin. Mech. Thermodyn. 28(1–2), 407–422 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Dai, M., Gharahi, A., Schiavone, P.: Analytic solution for a circular nano-inhomogeneity with interface stretching and bending resistance in plane strain deformations. Appl. Math. Modell. 55, 160–170 (2018)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Zemlyanova, A.Y., Mogilevskaya, S.G.: Circular inhomogeneity with steigmann-ogden interface: local fields, neutrality, and maxwell’s type approximation formula. Int. J. Solids Struct. 135, 85–98 (2018)CrossRefGoogle Scholar
  31. 31.
    Zemlyanova, A.Y.: Frictionless contact of a rigid stamp with a semi-plane in the presence of surface elasticity in the Steigmann–Ogden form. Math. Mech. Solids 23(8), 1140–1155 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Zemlyanova, A.Y.: A straight mixed mode fracture with the Steigmann–Ogden boundary condition. Q. J. Mech. Appl. Math. 70(1), 65–86 (2017)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zemlyanova, A.Y.: The effect of a curvature-dependent surface tension on the singularities at the tips of a straight interface crack. Q. J. Mech. Appl. Math. 66(2), 199–219 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Chen, H., Hu, G., Huang, Z.: Effective moduli for micropolar composite with interface effect. Int. J. Solids Struct. 44(25–26), 8106–8118 (2007)CrossRefzbMATHGoogle Scholar
  35. 35.
    Sigaeva, T., Schiavone, P.: Surface effects in anti-plane deformations of a micropolar elastic solid: integral equation methods. Contin. Mech. Thermodyn. 28(1), 105–118 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Sigaeva, T., Schiavone, P.: Influence of boundary elasticity on a couple stress elastic solid with a mode-III crack. Quart. J. Mech. Appl. Math. 68(2), 195–202 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Gharahi, A., Schiavone, P.: Plane micropolar elasticity with surface flexural resistance. Contin. Mech. Thermodyn. 30(3), 675–688 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Intarit, P., Senjuntichai, T., Rajapakse, R.K.N.D.: Dislocations and internal loading in a semi-infinite elastic medium with surface stresses. Eng. Fract. Mech. 77(18), 3592–3603 (2010). (Computational mechanics in fracture and damage: a special issue in Honor of Prof. Gross)CrossRefGoogle Scholar
  39. 39.
    Nowacki, W.: Theory of Asymmetric Elasticity. Pergamon Press, Oxford (1986)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations