Acta Mechanica

, Volume 230, Issue 3, pp 1145–1158 | Cite as

Computer implementation of piecewise cable element based on the absolute nodal coordinate formulation and its application in wire modeling

  • Peng Lan
  • Kun Li
  • Zuqing YuEmail author
Original Paper


A new high-voltage electricity wire model is proposed to simulate the dynamic behavior of the wire after tension failure and the nonlinear sliding joints between the wire and the iron tower. A previously developed piecewise cable element based on the absolute nodal coordinate formulation is used with its computer implementation given in this paper. In order to describe the initial tension in the wire, a static solving approach is used to achieve equilibrium between the element elastic force and the external force including the tension. The obtained configuration of the wire is then used as the initial configuration of analysis in case of unloaded external tension force. Thereby, the dynamic behavior of the wire can be modeled. The sliding joint constraint is used to describe the motion of the wire going through the iron tower after tension failure. A new static solution approach is developed to avoid the sliding joint constraint violation in the resulting equilibrium configuration. The convergence of the piecewise cable element based on the absolute nodal coordinate formulation is tested. A set of comparative results is presented to demonstrate the feasibility of the method proposed in this investigation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by “the National Natural Science Foundation of China” (Grant No. 11802072) and “the Fundamental Research Funds for the Central Universities” (Grant No. HIT. NSRIF 2018032).


  1. 1.
    Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn. 45, 109–130 (2006)CrossRefzbMATHGoogle Scholar
  2. 2.
    Hong, D., Ren, G.: A modeling of sliding joint on one-dimensional flexible medium. Multibody Syst. Dyn. 26, 91–106 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Escalona, J.L.: An arbitrary Lagrangian-Eulerian discretization method for modeling and simulation of reeving systems in multibody dynamics. Mech. Mach Theory 112, 1–21 (2017)CrossRefGoogle Scholar
  4. 4.
    Seo, J.-H., Sugiyama, H., Shabana, A.A.: Three-dimensional large deformation analysis of the multibody pantograph/catenary systems. Nonlinear Dyn. 42, 199–215 (2005)CrossRefzbMATHGoogle Scholar
  5. 5.
    Seo, J.-H., Kim, S.-W., Jung, I.-H., Park, T.-W., Mok, J.-Y., Kim, Y.-G., Chai, J.-B.: Dynamic analysis of a pantograph-catenary system using absolute nodal coordinates. Veh. Syst. Dyn. 44, 615–630 (2006)CrossRefGoogle Scholar
  6. 6.
    Pappalardo, C.M., Patel, M.D., Tinsley, B., Shabana, A.A.: Contact force control in multibody pantograph/catenary systems. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 230, 307–328 (2016)Google Scholar
  7. 7.
    Carnicero, A., Jimenez-Octavio, J.R., Sanchez-Rebollo, C., Ramos, A., Such, M.: Influence of track irregularities in the catenary-pantograph dynamic interaction. J. Comput. Nonlinear Dyn. 7, 041015 (2012)CrossRefGoogle Scholar
  8. 8.
    Lan, P., Shabana, A.A.: Integration of B-spline geometry and ANCF finite element analysis. Nonlinear Dyn. 61, 193–206 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Piegl, L., Tiller, W.: The NURBS Book. Springer, New York (2012)zbMATHGoogle Scholar
  10. 10.
    Lan, P., Yu, Z., Du, L., Lu, N.: Integration of non-uniform rational B-splines geometry and rational absolute nodal coordinates formulation finite element analysis. Acta Mech Solida Sin. 27, 486–495 (2014)CrossRefGoogle Scholar
  11. 11.
    Sanborn, G.G., Shabana, A.A.: A rational finite element method based on the absolute nodal coordinate formulation. Nonlinear Dyn. 58, 565–572 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Nada, A.A.: Use of B-spline surface to model large-deformation continuum plates: procedure and applications. Nonlinear Dyn. 72, 243–263 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Yu, Z., Lan, P., Lu, N.: A piecewise beam element based on absolute nodal coordinate formulation. Nonlinear Dyn. 77, 1–15 (2014)CrossRefzbMATHGoogle Scholar
  14. 14.
    Sugiyama, H., Escalona, J.L., Shabana, A.A.: Formulation of three-dimensional joint constraints using the absolute nodal coordinates. Nonlinear Dyn. 31, 167–195 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gerstmayr, J.: Nonlinear constraints in the absolute coordinate formulation. Acta Mech. 192, 191–211 (2007)CrossRefzbMATHGoogle Scholar
  16. 16.
    Sugiyama, H., Yamashita, H.: Spatial joint constraints for the absolute nodal coordinate formulation using the non-generalized intermediate coordinates. Multibody Syst Dyn. 26, 15–36 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wallin, M., Aboubakr, A.K., Jayakumar, P., Letherwood, M.D., Gorsich, D.J., Hamed, A., Shabana, A.A.: A comparative study of joint formulations: application to multibody system tracked vehicles. Nonlinear Dyn. 74, 783–800 (2013)CrossRefGoogle Scholar
  18. 18.
    Mizuno, Y., Sugiyama, H.: Sliding and nonsliding joint constraints of B-spline plate elements for integration with flexible multibody dynamics simulation. J Comput. Nonlinear Dyn. 9, 011001 (2013)CrossRefGoogle Scholar
  19. 19.
    Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123, 606–613 (2001)CrossRefGoogle Scholar
  20. 20.
    Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. 123, 614–621 (2001)CrossRefGoogle Scholar
  21. 21.
    Mikkola, A.M., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9, 283–309 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wei, C., Wang, L., Shabana, A.A.: A total Lagrangian ANCF liquid sloshing approach for multibody system applications. J. Comput. Nonlinear Dyn. 10, 051014 (2015)CrossRefGoogle Scholar
  23. 23.
    Shabana, A.A.: Computational Continuum Mechanics. Cambridge University Press, New York (2012)zbMATHGoogle Scholar
  24. 24.
    Pappalardo, C.M., Yu, Z., Zhang, X., Shabana, A.A.: Rational ANCF thin plate finite element. J. Comput. Nonlinear Dyn. 11, 051009 (2016)CrossRefGoogle Scholar
  25. 25.
    Berzeri, M., Shabana, A.A.: Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation. J. Sound Vib. 235(4), 539–565 (2000)CrossRefGoogle Scholar
  26. 26.
    Gerstmayr, J., Irschik, H.: On the correct representation of bending and axial deformation in the absolute coordinate formulation with an elastic line approach. J. Sound Vib. 318, 461–487 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechatronic EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations