Acta Mechanica

, Volume 230, Issue 3, pp 701–727 | Cite as

Failure modes and mechanisms for rechargeable Lithium-based batteries: a state-of-the-art review

  • Dandan Lyu
  • Bo Ren
  • Shaofan LiEmail author
Review and Perspective in Mechanics


The Li-ion battery (LiB) is regarded as one of the most popular energy storage devices for a wide variety of applications. Since their commercial inception in the 1990s, LiBs have dominated the consumer market of portable electronic devices, especially for laptops, cell phones, and many medical devices. As the transition of Li-ion batteries from being used in portable electronic devices to longer lifetime and more safety-critical applications, such as electric cars, electrically powered underwater vehicles, and aircrafts, the price of failure has become much more important in terms of both liability and cost (Hendricks et al. in J Power Sources 297:113–120, 2015). This paper reviews the current development and potential problems of Li-ion batteries, particularly focusing on the failure mechanism and its possible solutions of Li-ion batteries. It has been a general consensus that Li-ion batteries will continue to dominate the battery market in the foreseen future as a convenient electric power source. Finally, this paper provides authors’ perspectives on future directions and challenges on experimental and computational modeling aspects of Li-based battery researches, in particular, the failure analysis of Li-based batteries.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Hendricks, C., Williard, N., Mathew, S., Pecht, M.: A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries. J. Power Sources 297, 113–120 (2015)Google Scholar
  2. 2.
    Lu, J., Wu, T., Amine, K.: State-of-the-art characterization techniques for advanced lithium-ion batteries. Nat. Energy 2(3), 17011 (2017)Google Scholar
  3. 3.
    Deng, D., Kim, G., Lee, Y., Cho, J.: Green energy storage materials: nanostructured \({\rm TiO}_2\) and Sn-based anodes for lithium-ion batteries. Energy Environ. Sci 2, 818–837 (2009)Google Scholar
  4. 4.
    Tarascon, J.-M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)Google Scholar
  5. 5.
    Electric vehicle outlook 2017. Bloomberg New Energy Finance (2017)Google Scholar
  6. 6.
    Deng, D.: Li-ion batteries: basics, progress, and challenges. Energy Sci. Eng. 3(5), 385–418 (2015)Google Scholar
  7. 7.
    Nitta, N., Wu, F., Lee, J.T., Yushin, G.: Li-ion battery materials: present and future. Biochem. Pharmacol. 18(5), 252–264 (2015)Google Scholar
  8. 8.
    Whittingham, M.S.: Electrical energy storage and intercalation chemistry. Science 192(4244), 1126–1127 (1976)Google Scholar
  9. 9.
    Levins, S.: The great battery race. Foreign Policy 182, 88–95 (2010)Google Scholar
  10. 10.
    Besenhard, J.O., Fritz, H.P.: Cathodic reduction of graphite in organic solutions of alkali and NR4+ salts. J. Electroanal. Chem. Interfacial Electrochem. 53(2), 329–333 (1974)Google Scholar
  11. 11.
    Besenhard, J.O.: The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes. Carbon 14(2), 111–115 (1976)Google Scholar
  12. 12.
    Schöllhorn, R., Kuhlmann, R., Besenhard, J.O.: Topotactic redox reactions and ion exchange of layered \({\rm MoO}_3\) bronzes. Mater. Res. Bull. 11(1), 83–90 (1976)Google Scholar
  13. 13.
    Besenhard, J.O., Schöllhorn, R.: The discharge reaction mechanism of the \({\rm MoO}_3\) electrode in organic electrolytes. J. Power Sources 1(3), 267–276 (1976)Google Scholar
  14. 14.
    Besenhard, J.O., Eichinger, G.: High energy density lithium cells: part I. Electrolytes and anodes. J. Electroanal. Chem. Interfacial. Electrochem. 68(1), 1–18 (1976)Google Scholar
  15. 15.
    Eichinger, G., Besenhard, J.O.: High energy density lithium cells: part II. Cathodes and complete cells. J. Electroanal. Chem. Interfacial. Electrochem. 72(1), 1–31 (1976)Google Scholar
  16. 16.
    Godshall, N.A., Raistrick, I.D., Huggins, R.A.: Thermodynamic investigations of ternary lithium-transition metal-oxygen cathode materials. Mater. Res. Bull. 15(5), 561–570 (1980)Google Scholar
  17. 17.
    Mizushima, K., Jones, P.C., Wiseman, P.J., Goodenough, J.B.: \({\rm Li}_x{\rm CoO}_2\) (\(0<x\le 1\)): a new cathode material for batteries of high energy density. Mater. Res. Bull. 15(6), 783–789 (1980)Google Scholar
  18. 18.
    Yazami, R., Touzain, Ph.: A reversible graphite-lithium negative electrode for electrochemical generators. J. Power Sources 9(3), 365–371 (1983)Google Scholar
  19. 19.
    Raistrick, I.D., Godshall, N.A., Huggins, R.A.: Ternary compound electrode for lithium cells. US Patent 4,340,652 (1982)Google Scholar
  20. 20.
    Thackeray, M.M., David, W.I.F., Bruce, P.G., Goodenough, J.B.: Lithium insertion into manganese spinels. Mater. Res. Bull. 18(4), 461–472 (1983)Google Scholar
  21. 21.
    Yoshino, A., Sanechika, K., Nakajima, T.: Secondary battery. US Patent 4,668,595 (1987)Google Scholar
  22. 22.
    Wakihara, M., Yamamoto, O.: Lithium Ion Batteries: Fundamentals and Performance. Wiley-VCH, New York (1998)Google Scholar
  23. 23.
    Padhi, A.K., Naujundaswamy, K.S., Goodenough, J.B.: \({\rm LiFePO}_4\): a novel cathode material for rechargeable batteries. Electrochem. Soc. Meet. Abstr. 96–1, 73 (1996)Google Scholar
  24. 24.
    Market Research Report: Energy Storage Tracker 3Q17: Market Share Data, Industry Trends, Market Analysis, and Project Tracking by World Region, Technology, Application, and Market Segment, Published by NAVIGANT RESEARCH (2017)Google Scholar
  25. 25.
    Bhatt, M.D., Dwyer, C.O.: Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Phys. Chem. Chem. Phys. 17, 4799–4844 (2015)Google Scholar
  26. 26.
    Song, M.-K., Park, S., Alamgir, F.M., Cho, J., Liu, M.: Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Mater. Sci. Eng. R 72(11), 203–252 (2011)Google Scholar
  27. 27.
    Martins, R., Gonalves, R., Costa, C.M., Ferdov, S., Lanceros-Mendez, S.: Mild hydrothermal synthesis and crystal morphology control of \({\rm LiFePO}_4\) by lithium nitrate. Nano-Struct. Nano-Objects 11, 82 (2017)Google Scholar
  28. 28.
    Kam, K.C., Doeff, M.M.: Electrode materials for lithium ion. Mater. Matters 7(4), 56–60 (2012)Google Scholar
  29. 29.
    Chen, S., Gordin, M.L., Yi, R., Howlett, G., Sohn, H., Wang, D.H.: Silicon core-hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries. Phys. Chem. Chem. Phys. 14(37), 12741–12745 (2012)Google Scholar
  30. 30.
    Tredeau, F.P., Kim, B.G., Salameh, Z.M.: Performance evaluation of Lithium Cobalt cells and the suitability for use in electric vehicles. In: Vehicle Power and Propulsion Conference (2008)Google Scholar
  31. 31.
    Daniel, C., Mohanty, D., Li, J., Wood, D.L.: Cathode materials review. In: AIP Conference Proceedings, pp. 26–43 (2014)Google Scholar
  32. 32.
    Tarascon, J.M., Wang, E., Shokoohi, F.K., Mckinnon, W.R., Colson, S.: The spinel phase of \({\rm LiMn}_2{\rm O}_4\) as a cathode in secondary lithium cells. J. Electrochem. Soc. 138(10), 9–14 (1991)Google Scholar
  33. 33.
    Tarascon, J.M., Guyomard, D.: New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the \({\rm LiMn}_2{\rm O}_4\)/carbon li-ion cells. Solid State Ion. 69(3), 293–305 (1994)Google Scholar
  34. 34.
    Tarascon, J.M., Mckinnon, W.R., Coowar, F., Bowmer, T.N., Amatucci, G., Guyomard, D.: Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel \(\text{ LiMn }_2{\rm O}_4\). J. Electrochem. Soc. 141(6), 1421–1431 (1994)Google Scholar
  35. 35.
    Hummel, R.E.: Electronic Properties of Materials: An Introduction for Engineers. Springer, New York (2011)Google Scholar
  36. 36.
    Nagasubramanian, G., Ingersoll, D., Doughty, D., Radzykewycz, D., Hill, C., Marsh, C.: Electrical and electrochemical performance characteristics of large capacity lithium-ion cells. J. Power Sources 80(1), 116–118 (1999)Google Scholar
  37. 37.
    Tarascon, J.M., Recham, N., Armand, M., Barpanda, P., Walker, W., Dupont, L.: Hunting for better Li-based electrode materials via low temperature inorganic synthesis. Chem. Mater. 22(3), 724–739 (2010)Google Scholar
  38. 38.
    Liu, Q., Wang, S., Tan, H., Yang, Z., Zeng, J.: Preparation and doping mode of doped \({\rm LiMn}_2{\rm O}_4\) for Li-ion batteries. Energies 6(3), 1718–1730 (2013)Google Scholar
  39. 39.
    Chen, X., Shen, W., Vo, T., Cao, Z., Kapoor, A.: An overview of lithium-ion batteries for electric vehicles. In: IPEC 2012 Conference on Power and Energy (2012)Google Scholar
  40. 40.
    Wang, J., Sun, Z., Wei, X.: Performance and characteristic research in \({\rm LiFePO}_4\) battery for electric vehicle applications. In: Vehicle Power and Propulsion Conference, pp. 1657– 1661 (2009)Google Scholar
  41. 41.
    Shukla, A.K., Kumar, T.P.: Materials for next-generation lithium batteries. Curr. Sci. 94(3), 314–331 (2008)Google Scholar
  42. 42.
    He, W., Chen, Q., Zhang, T., Gao, Y., Cao, J.: Solvothermal synthesis of uniform \({\rm Li}_3{\rm V}_2({\rm PO}_4)_3/\text{ C }\) nanoparticles as cathode materials for lithium ion batteries. Micro Nano Lett. 10, 67–70 (2015)Google Scholar
  43. 43.
    Zhang, Q., Huang, S., Jin, J., Liu, J., Li, Y., Wang, H., Chen, L., Wang, B., Su, B.: Engineering 3D bicontinuous hierarchically macro-mesoporous \(\text{ LiFePO }_4/\text{ C }\) nanocomposite for lithium storage with high rate capability and long cycle stability. Sci. Rep. 6, 25942 (2016)Google Scholar
  44. 44.
    Song, G.M., Wu, Y., Xu, Q., Liu, G.: Enhanced electrochemical properties of \(\text{ LiFePO }_4\) cathode for Li-ion batteries with amorphous nip coating. J. Power Sources 195(12), 3913–3917 (2010)Google Scholar
  45. 45.
    Cao, K., Jin, T., Yang, L., Jiao, L.: Recent progress in conversion reaction metal oxide anodes for Li-ion batteries. Mater. Chem. Front. 1(11), 2213–2242 (2017)Google Scholar
  46. 46.
    Jin, J., Zhengand, Y., Kong, L.B., Srikanth, N., Yan, Q., Zhou, K.: Tuning ZnSe/CoSe in MOF-derived N-doped porous carbon/CNTs for high-performance lithium storage. J. Mater. Chem. A 6(32), 15710–15717 (2018)Google Scholar
  47. 47.
    Wu, R., Qian, X., Zhou, K., Wei, J., Lou, J., Ajayan, P.M.: Porous spinel \(\text{ Zn }_{x}\text{ CO }_{3-{x}}\text{ O }_4\) hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 8(6), 6297–6303 (2014)Google Scholar
  48. 48.
    Mekonnen, Y., Sundararajan, A., Sarwat, A.I.: A review of cathode and anode materials for lithium-ion batteries. Proceedings of the SoutheastCon, Norfolk, pp. 1–6. IEEE (2016)Google Scholar
  49. 49.
    Megahed, S., Scrosati, B.: Lithium-ion rechargeable batteries. J. Power Sources 51, 79–104 (1994)Google Scholar
  50. 50.
    Bonino, F., Brutti, S., Reale, P., Scrosati, B., Gherghel, L., Wu, J., Mullen, K.: A disordered carbon as a novel anode material in lithium-ion cells. Adv. Mater. 17(6), 743–746 (2005)Google Scholar
  51. 51.
    Winter, M., Besenhard, J.O., Spahr, M.E., Novak, P.: Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10(10), 725–763 (1998)Google Scholar
  52. 52.
    Flandrois, S., Simon, B.: Carbon materials for lithium-ion rechargeable batteries. Carbon 37(2), 165–180 (1999)Google Scholar
  53. 53.
    Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes-the route toward applications. Science 297(5582), 787–792 (2002)Google Scholar
  54. 54.
    Che, G.L., Lakshmi, B.B., Fisher, E.R., Martin, C.R.: Carbon nanotubule membranes for electrochemical energy storage and production. Science 393, 346–349 (1998)Google Scholar
  55. 55.
    Winter, M., Besenhard, J.O.: Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 45(1), 31–50 (1999)Google Scholar
  56. 56.
    Dimov, N., Xia, Y., Yoshio, M.: Practical silicon-based composite anodes for lithium-ion batteries: fundamental and technological features. J. Power Sources 171(2), 886–893 (2007)Google Scholar
  57. 57.
    Leung, K.: Electronic Structure Modeling of Electrochemical Reactions at Electrode/Electrolyte Interfaces in Lithium Ion Batteries. Sandia National Laboratories, Albuquerque (2013)Google Scholar
  58. 58.
    Scarselli, M., Castrucci, P., Crescenzi, M.D.: Electronic and optoelectronic nano-devices based on carbon nanotubes. J. Phys. Condens. Matter. 24(31), 313202 (2012)Google Scholar
  59. 59.
    Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., Sun, J., Chen, C.: Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 208, 210–224 (2012)Google Scholar
  60. 60.
    Wu, C., Zhu, C., Ge, Y., Zhao, Y.: A review on fault mechanism and diagnosis approach for Li-ion batteries. J. Nanomater. 2015, 8 (2015)Google Scholar
  61. 61.
    Pharr, M.M.: Diffusion, deformation, and damage in lithium-ion batteries and microelectronics. Doctoral dissertation. Harvard University (2014)Google Scholar
  62. 62.
    OConnor, D.T., Welland, M.J., Liu, W.K., Voorhees, P.W.: Phase transformation and fracture in single \({\rm Li}_x{\rm FePO}_4\) cathode particles: a phase-field approach to Li-ion intercalation and fracture. Model. Simul. Mater. Sci. Eng. 24, 17 (2016)Google Scholar
  63. 63.
    Wang, D., Wu, X., Wang, Z., Chen, L.: Cracking causing cyclic instability of \({\rm LiFePO}_4\) cathode material. J. Power Sources 140(1), 125–128 (2005)Google Scholar
  64. 64.
    Chen, G., Song, X., Richardson, T.J.: Electron microscopy study of the \({\rm LiFePO}_4\) to \({\rm FePO}_4\) phase transition. Electrochem. Solid-State Lett. 9(6), A295–A298 (2006)Google Scholar
  65. 65.
    Gabrisch, H., Wilcox, J., Doeff, M.M.: TEM study of fracturing in spherical and plate-like \({\rm LiFePO}_4\). Electrochem. Solid-State Lett. 11(3), A25–A29 (2008)Google Scholar
  66. 66.
    Deng, J., Wagner, G.J., Muller, R.P.: Phase field modeling of solid electrolyte interface formation in Lithium ion batteries. J. Electrochem. Soc. 160(3), A487–A496 (2013)Google Scholar
  67. 67.
    Malik, R., Abdellahi, A., Ceder, G.: A critical review of the Li insertion mechanisms in \({\rm LiFePO}_4\) electrodes. J. Electrochem. Soc. 160(5), A3179–A3197 (2013)Google Scholar
  68. 68.
    Malik, R., Zhou, F., Ceder, G.: Kinetics of non-equilibrium lithium incorporation in \({\rm LiFePO}_4\). Nature 10, 587–590 (2011)Google Scholar
  69. 69.
    Laffont, L., Delacourt, C., Gibot, P., Wu, M.Y., Kooyman, P., Masquelier, C., Tarascon, J.M.: Study of the \({\rm LiFePO}_4/{\rm FePO}_4\) two-phase system by high-resolution electron energy loss spectroscopy. Chem. Mater. 152(5), 5520–5529 (2006)Google Scholar
  70. 70.
    Amin, R., Balaya, P., Maier, J.: Anisotropy of electronic and ionic transport in \({\rm LiFePO}_4\) single crystals. Electrochem. Solid-State Lett. 10, A13–A16 (2007)Google Scholar
  71. 71.
    Brzant, M.Z.: Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. Acc. Chem. Res. 46, 1144–1160 (2013)Google Scholar
  72. 72.
    Singh, G.K., Ceder, G., Bazant, M.Z.: Intercalation dynamics in rechargeable battery materials: general theory and phase-transformation waves in \({\rm LiFePO}_4\). Electrochim. Acta 53, 7599–7613 (2008)Google Scholar
  73. 73.
    Maxisch, T., Ceder, G.: Elastic properties of olivine \({\rm Li}_{x}{\rm FePO}_{4}\) from first principles. Phys. Rev. B 73, 174112 (2006)Google Scholar
  74. 74.
    Woodford, W.H., Carter, W.C., Chiang, Y.: Design criteria for electrochemical shock resistant battery electrodes. Energy Environ. Sci. 5, 8014–8024 (2012)Google Scholar
  75. 75.
    Hu, Y., Zhao, X., Suo, Z.: Averting cracks caused by insertion reaction in lithiumion batteries. J. Mater. Res. 25(6), 1007–1010 (2010)Google Scholar
  76. 76.
    Cogswell, D.A., Bazant, M.Z.: Coherency strain and the kinetics of phase separation in \({\rm LiFePO}_4\) nanoparticles. ACS Nano 6(3), 2215–2225 (2012)Google Scholar
  77. 77.
    Borden, M.J., Verhoosel, C.V., Scott, M.A., Hughes, T.J., Landis, C.M.: A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 217–220(Supplement C), 77–95 (2012)MathSciNetzbMATHGoogle Scholar
  78. 78.
    Wang, J., Sun, X.: Understanding and recent development of carbon coating on \({\rm LiFePO}_4\) cathode materials for lithium-ion batteries. Energy Environ. Sci. 5(1), 5163–5185 (2012)Google Scholar
  79. 79.
    Meethong, N., Kao, Y., Speakman, S.A., Chiang, Y.: Aliovalent substitutions in olivine lithium iron phosphate and impact on structure and properties. Adv. Funct. Mater. 19(7), 1060–1070 (2009)Google Scholar
  80. 80.
    Chung, S., Bloking, J.T., Chiang, Y.: Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 1, 123–128 (2002)Google Scholar
  81. 81.
    Wu, X., Jiang, L., Cao, F., Guo, Y., Wan, L.: \({\rm LiFePO}_4\) nanoparticles embedded in a nanoporous carbon matrix: superior cathode material for electrochemical energy-storage devices. Adv. Mater. 21(25–26), 2710–2714 (2009)Google Scholar
  82. 82.
    Lu, Z., Cheng, H., Lo, M., Chung, C.Y.: Pulsed laser deposition and electrochemical characterization of \({\rm LiFePO}_4\)–Ag composite thin films. Adv. Mater. 17(18), 3885–3896 (2007)Google Scholar
  83. 83.
    Zhang, S.: Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries. Comput. Mater. 3(1), 1–11 (2017)MathSciNetGoogle Scholar
  84. 84.
    Liu, X.H., Zheng, H., Zhong, L., Huang, S., Karki, K., Zhang, L.Q., Liu, Y., et al.: Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11(8), 3312–3318 (2011)Google Scholar
  85. 85.
    Yang, H., Huang, S., Huang, X., Fan, F., Liang, W., Liu, X.H., Chen, L., Huang, J.Y., Li, J., Zhu, T., Zhang, S.: Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. Nano Lett. 12(4), 1953–1958 (2012)Google Scholar
  86. 86.
    Liang, W., Yang, H., Fan, F., Liu, Y., Liu, X.H., Huang, J.Y., Zhu, T., Zhang, S.: Tough Germanium nanoparticles under electrochemical cycling. ACS Nano 7(4), 3427–3433 (2013)Google Scholar
  87. 87.
    Ryu, I., Lee, S.W., Gao, H., Cui, Y., Nix, W.D.: Microscopic model for fracture of crystalline Si nanopillars during lithiation. J. Power Sources 255(Supplement C), 274–282 (2014)Google Scholar
  88. 88.
    Yang, H., Liang, W., Guo, X., Wang, C., Zhang, S.: Strong kinetics-stress coupling in lithiation of Si and Ge anodes. Extreme Mech. Lett. 2(Supplement C), 1–6 (2015)Google Scholar
  89. 89.
    An, Y., Jiang, H.: A finite element simulation on transient large deformation and mass diffusion in electrodes for lithium ion batteries. Model. Simul. Mater. Sci. Eng. 21(7), 074007 (2013)Google Scholar
  90. 90.
    Hertzberg, B., Benson, J., Yushin, G.: Ex-situ depth-sensing indentation measurements of electrochemically produced Si-Li alloy films. Electrochem. Commun. 13, 818–821 (2011)Google Scholar
  91. 91.
    Berla, L.A., Woo, S., Cui, Y., Nix, W.D.: Mechanical behavior of electrochemically lithiated silicon. J. Power Sources 273, 41–51 (2015)Google Scholar
  92. 92.
    Scalco, L., Vasconcelos, D., Xu, R., Li, J., Zhao, K.: Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries. Extreme Mech. Lett. 9, 495–502 (2016)Google Scholar
  93. 93.
    Sethuraman, V.A., Chon, M.J., Shimshak, M., Srinivasan, V., Guduru, P.R.: In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J. Power Sources 195(15), 5062–5066 (2010)Google Scholar
  94. 94.
    Pharr, M., Suo, Z., Vlassak, J.J.: Measurements of the fracture energy of lithiated silicon electrodes of li-ion batteries. Nano Lett. 13(11), 5570–5577 (2013)Google Scholar
  95. 95.
    Kubota, Y., Escaño, M.C., Nakanishi, H., Kasai, H.: Crystal and electronic structure of \({\rm Li}_{15}{\rm Si}_4\). J. Appl. Phys. 102(5), 053704 (2007)Google Scholar
  96. 96.
    Chevrier, V.L., Dahn, J.R.: First principles model of amorphous silicon lithiation. J. Electrochem. Soc. 156, 454–458 (2009)Google Scholar
  97. 97.
    Chevrier, V.L., Dahn, J.R.: First principles studies of disordered lithiated silicon. J. Electrochem. Soc. 157, 392–398 (2010)Google Scholar
  98. 98.
    Chevrier, V.L., Zwanziger, J.W., Dahn, J.R.: First principles studies of silicon as a negative electrode material for lithium-ion batteries. Can. J. Phys. 87(6), 625–632 (2009)Google Scholar
  99. 99.
    Kim, H., Seo, M., Park, M., Cho, J.: A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem. Int. Ed. 49(12), 2146–2149 (2010)Google Scholar
  100. 100.
    Zhao, K., Wang, W.L., Gregoire, J., Pharr, M., Suo, Z., Vlassak, J.J., Kaxiras, E.: Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: a first-principles theoretical study. Nano Lett. 11(7), 2962–2967 (2011)Google Scholar
  101. 101.
    Zhang, W.J.: A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196(1), 13–24 (2011)Google Scholar
  102. 102.
    Zhang, Q., Cui, Y., Wang, E.: Anisotropic lithium insertion behavior in silicon nanowires: binding energy, diffusion barrier, and strain effect. J. Phys. Chem. C 115(19), 9376–9381 (2011)Google Scholar
  103. 103.
    Fan, F., Huang, S., Yang, H., Raju, M., Datta, D., Shenoy, V.B., Duin, A.C., Zhang, S., Zhu, T.: Mechanical properties of amorphous \(\text{ Li }_{x}\text{ Si }\) alloys: a reactive force field study. Model. Simul. Mater. Sci. Eng. 21(7), 074002 (2013)Google Scholar
  104. 104.
    Argon, A.S., Demkowicz, M.J.: What can plasticity of amorphous silicon tell us about plasticity of metallic glasses? Metall. Mater. Trans. A 39(8), 1762–1778 (2008)Google Scholar
  105. 105.
    Schuh, C.A., Hufnagel, T.C., Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55(12), 4067–4109 (2007)Google Scholar
  106. 106.
    Ostadhossein, A., Cubuk, E.D., Tritsaris, G.A., Kaxiras, E.: Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF. Phys. Chem. Chem. Phys. 17(5), 3832–3840 (2015)Google Scholar
  107. 107.
    Van Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard, W.A.: ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105(41), 9396–9409 (2001)Google Scholar
  108. 108.
    Senftle, T.P., Hong, S., Islam, M.M., Kylasa, S.B., Zheng, Y., et al.: The ReaxFF reactive force-field: development, applications and future directions. Comput. Mater. 2, 15011 (2016)Google Scholar
  109. 109.
    Bhandakkar, T.K., Gao, H.J.: Cohesive modeling of crack nucleation under diffusion induced stresses in a thin strip: Implications on the critical size for flaw tolerant battery electrodes. Int. J. Solids Struct. 47, 1424–1434 (2010)zbMATHGoogle Scholar
  110. 110.
    Chandrasekaran, R., Magasinski, A., Yushin, G., Fuller, T.F.: Analysis of lithium insertion/deinsertion in a silicon electrode particle at room temperature. J. Electrochem. Soc. 157, A1139–A1151 (2010)Google Scholar
  111. 111.
    Bucci, G., Nadimpalli, S.P., Sethuraman, V.A., Bower, A.F., Guduru, P.R.: Measurement and modeling of the mechanical and electrochemical response of amorphous si thin film electrodes during cyclic lithiation. J. Mech. Phys. Solids 62(Supplement C), 276–294 (2014)Google Scholar
  112. 112.
    Chen, L., Fan, F., Hong, L., Chen, J., Ji, Y.Z., Zhang, S.L., Zhu, T., Chen, L.Q.: A phase-field model coupled with large elasto-plastic deformation: application to lithiated silicon electrodes. J. Electrochem. Soc. 161(11), 3164–3172 (2014)Google Scholar
  113. 113.
    Bruce, P.G., Scrosati, B., Tarascon, J.: Nanomaterials for rechargeable Lithium batteries. Angew. Chem. Int. Ed. 47(16), 2930–2946 (2008)Google Scholar
  114. 114.
    Li, H., Huang, X., Chen, L., Wu, Z., Liang, Y.: A high capacity nano Si composite anode material for Lithium rechargeable batteries. Electrochem. Solid-State Lett. 2(11), 547–549 (1999)Google Scholar
  115. 115.
    Liu, N., Wu, H., McDowell, M.T., Yao, Y., Wang, C.M., Cui, Y.: A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 12(6), 3315–3321 (2012)Google Scholar
  116. 116.
    Wu, H., Chan, G., Choi, J.W., Ryu, I., Yao, Y., McDowell, M.T., Lee, S.W., Jackson, A., Yang, Y., Hu, L., Cui, Y.: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7(5), 310–315 (2012)Google Scholar
  117. 117.
    Li, S., Zeng, X., Ren, B., Qian, J., Zhang, J., Jha, A.J.: An atomistic-based interphase zone model for crystalline solids. Comput. Methods Appl. Mech. Eng. 229–232, 87–109 (2012)MathSciNetzbMATHGoogle Scholar
  118. 118.
    Liu, N., Lu, Z., Zhao, J., Mcdowell, M.T., Lee, H., Zhao, W.: A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187–192 (2014)Google Scholar
  119. 119.
    Ma, D., Cao, Z., Hu, A.: Si-based anode materials for Li-ion batteries: a mini review. Nano-Micro Lett. 6, 347–358 (2014)Google Scholar
  120. 120.
    Xu, W., Wang, J., Ding, F., Chen, X., Nasybulin, E., Zhang, Y., Zhang, J.: Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014)Google Scholar
  121. 121.
    Chianelli, R.R.: Microscopic studies of transition metal chalcogenides. J. Cryst. Growth 34(2), 239–244 (1976)Google Scholar
  122. 122.
    Li, Q., Tan, S., Li, L., Lu, Y., He, Y.: Understanding the molecular mechanism of pulse current charging for stable Lithium-metal batteries. Sci. Adv. 3(7), e1701246 (2017)Google Scholar
  123. 123.
    Aurbach, D., Zinigrad, E., Teller, H., Cohen, Y., Salitra, G., Yamin, H., Dan, P., Elster, E.: Attempts to improve the behavior of Li electrodes in rechargeable Lithium batteries. J. Electrochem. Soc. 149(10), A1267–A1277 (2002)Google Scholar
  124. 124.
    Lin, D., Liu, Y., Liang, Z., Lee, H., Sun, J., Wang, H., Yan, K., Xie, J., Cui, Y.: Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for Lithium metal anodes. Nat. Nanotecnol. 11(7), 626 (2016)Google Scholar
  125. 125.
    Tan, J., Tartakovsky, A.M., Ferris, K., Ryan, E.M.: Investigating the effects of anisotropic mass transport on dendrite growth in high energy density Lithium batteries. J. Electrochem. Soc. 163(2), 318–327 (2016)Google Scholar
  126. 126.
    Harry, K.J., Hallinan, D.T., Parkinson, D.Y., MacDowell, A.A., Balsara, N.P.: Detection of subsurface structures underneath dendrites formed on cycled Lithium metal electrodes. Nat. Mater. 13, 69–73 (2014)Google Scholar
  127. 127.
    Sannier, L., Beaudoin, B., Trentin, M., Tarascon, J.: Live scanning electron microscope observations of dendritic growth in Lithium/polymer cells. Electrochem. Solid-State Lett. 5(12), A286–A289 (2002)Google Scholar
  128. 128.
    Yamaki, J., Tobishima, S., Hayashi, K., Saito, K., Nemoto, Y., Arakawa, M.: A consideration of the morphology of electrochemically deposited Lithium in an organic electrolyte. J. Power Sources 74(2), 219–227 (1998)Google Scholar
  129. 129.
    Steiger, J., Kramer, D., Mönig, R.: Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of Lithium. J. Power Sources 261, 112–119 (2014)Google Scholar
  130. 130.
    Cheng, E.J., Sharafi, A., Sakamoto, J.: Intergranular Li metal propagation through polycrystalline \(\text{ Li }_{6.25} \text{ Al }_{0.25} \text{ La }_3 \text{ Zr }_2 \text{ O }_{12}\) ceramic electrolyte. Electrochim. Acta 223, 85–91 (2017)Google Scholar
  131. 131.
    Cheng, X., Zhang, R., Zhao, C., Zhang, Q.: Toward safe Lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017)Google Scholar
  132. 132.
    Takaki, T.: Phase-field modeling and simulations of dendrite growth. ISIJ Int. 54(2), 437–444 (2014)Google Scholar
  133. 133.
    Chen, L., Wei, H., Yun, L., Liu, Z., Qi, Y., Lu, P., Chen, J., Chen, L.Q.: Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model. J. Power Sources 300, 376–385 (2015)Google Scholar
  134. 134.
    Ely, D.R., Jana, A., García, R.E.: Phase field kinetics of Lithium electrodeposits. J. Power Sources 272, 581–594 (2014)Google Scholar
  135. 135.
    Newman, J., Tiedemann, W.: Porous-electrode theory with battery applications. AIChE J. 21(1), 25–41 (1975)Google Scholar
  136. 136.
    Darling, R., Newman, J.: Modeling a porous intercalation electrode with two characteristic particle sizes. J. Electrochem. Soc. 144(12), 4201–4208 (1997)Google Scholar
  137. 137.
    Doyle, M., Fuller, T.F., Newman, J.: Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J. Electrochem. Soc. 140(6), 1526–1533 (1993)Google Scholar
  138. 138.
    Fuller, T.F., Doyle, M., Newman, J.: Simulation and optimization of the dual Lithium ion insertion cell. J. Electrochem. Soc. 141(1), 1–10 (1994)Google Scholar
  139. 139.
    Deshpande, R., Cheng, Y.T., Verbrugge, M.W.: Modeling diffusion-induced stress in nanowire electrode structures. J. Power Sources 195(15), 5081–5088 (2010)Google Scholar
  140. 140.
    Yang, F.: Interaction between diffusion and chemical stresses. Mater. Sci. Eng. A 409(1–2), 153–159 (2005)Google Scholar
  141. 141.
    Cui, Z., Gao, F., Qu, J.: A finite deformation stress-dependent chemical potential and its applications to Lithium ion batteries. J. Mech. Phys. Solids 60(7), 1280–1295 (2012)MathSciNetGoogle Scholar
  142. 142.
    Zhang, X., Shyy, W., Sastry, A.M.: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154(10), A910–A916 (2007)Google Scholar
  143. 143.
    Christensen, J., Newman, J.: Stress generation and fracture in Lithium insertion materials. J. Solid State Electrochem. 10(5), 293–319 (2006)Google Scholar
  144. 144.
    Eshelby, J.D.: The force on an elastic singularity. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 244(877), 87–112 (1951)MathSciNetzbMATHGoogle Scholar
  145. 145.
    Eshelby, J.D.: The elastic energy-momentum tensor. J. Elast. 5(3), 321–335 (1975)MathSciNetzbMATHGoogle Scholar
  146. 146.
    Haftbaradaran, H., Song, J., Curtin, W.A., Gao, H.: Continuum and atomistic models of strongly coupled diffusion, stress, and solute concentration. J. Power Sources 196(1), 361–370 (2011)Google Scholar
  147. 147.
    Olmsted, D.L., Phillips, R., Curtin, W.A.: Modelling diffusion in crystals under high internal stress gradients. Model. Simul. Mater. Sci. Eng. 12(5), 781 (2004)Google Scholar
  148. 148.
    Aziz, M.J., Sabin, P.C., Lu, G.: The activation strain tensor: Nonhydrostatic stress effects on crystal-growth kinetics. Phys. Rev. B 44(18), 9812 (1991)Google Scholar
  149. 149.
    Barvosa-Carter, W., Aziz, M.J., Gray, L.J., Kaplan, T.: Kinetically driven growth instability in stressed solids. Phys. Rev. Lett. 81(7), 1445 (1998)Google Scholar
  150. 150.
    Berne, B.J., Ciccotti, G., Coker, D.F.: Classical and Quantum Dynamics in Condensed Phase Simulations. World Scientific, Singapore (1998)Google Scholar
  151. 151.
    Henkelman, G., Jónsson, H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113(22), 9978–9985 (2000)Google Scholar
  152. 152.
    Henkelman, G., Uberuaga, B.P., Jónsson, H.: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000)Google Scholar
  153. 153.
    Aryanfar, A., Brooks, D., Merinov, B.V., Goddard, W.A., Colussi, J., Ho, M.R.: Dynamics of Lithium dendrite growth and inhibition: pulse charging. J. Phys. Chem. Lett. 5(10), 1721–1726 (2014)Google Scholar
  154. 154.
    Aryanfar, A., Brooks, D.J., Colussi, A.J., Merinov, B.V., Goddard III, W.A., Hoffmann, M.R.: Thermal relaxation of Lithium dendrites. Phys. Chem. Chem. Phys. 17, 8000–8005 (2015)Google Scholar
  155. 155.
    Aryanfar, A., Cheng, T., Colussi, A.J., Merinov, B.V., Goddard, W.A., Michael, R., Aryanfar, A., Cheng, T., Colussi, A.J., Merinov, B.V.: Annealing kinetics of electrodeposited Lithium dendrites. J. Chem. Phys. 134701(2015), 1–6 (2016)Google Scholar
  156. 156.
    Liu, C., Neale, Z.G., Cao, G.: Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 19(2), 109–123 (2016)Google Scholar
  157. 157.
    Mos, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999)MathSciNetzbMATHGoogle Scholar
  158. 158.
    Zeng, X., Li, S.: A multiscale cohesive zone model and simulations of fracture. Comput. Methods Appl. Mech. Eng. 199, 547–556 (2010)zbMATHGoogle Scholar
  159. 159.
    Qian, J., Li, S.: Application of multiscale cohesive zone model to simulate fracture in polycrystalline solids. ASME J. Eng. Mater. Technol. 133, 011010 (2011)Google Scholar
  160. 160.
    Lyu, D., Fan, H., Li, S.: A hierarchical multiscale cohesive zone model and simulation of dynamic fracture in metals. Eng. Fract. Mech. 163, 327–347 (2016)Google Scholar
  161. 161.
    Ren, B., Li, S.: Meshfree simulations of plugging failures in high-speed impacts. Comput. Struct. 88, 909–923 (2010)Google Scholar
  162. 162.
    Ren, B., Li, S., Qian, J., Zeng, X.: Meshfree simulations of spall fracture. Comput. Methods Appl. Mech. Eng. 200, 797–811 (2011)MathSciNetzbMATHGoogle Scholar
  163. 163.
    Guo, Y.J., Nairn, J.A.: Simulation of dynamic 3D crack propagation within the material point method. CMES Comput. Model. Eng. Sci. 113(4), 389–410 (2007)Google Scholar
  164. 164.
    Ferezghi, Y.S., Sohrabi, M., Nezhad, S.: Dynamic analysis of non-symmetric functionally graded (FG) cylindrical structure under shock loading by radial shape function using meshless local Petrov-Galerkin (MLPG) method with nonlinear grading patterns. CMES Comput. Model. Eng. Sci. 113(4), 497–520 (2017)Google Scholar
  165. 165.
    Hedayati, E., Vahedi, M.: Numerical investigation of penetration in ceramic/aluminum targets using smoothed particle hydrodynamics method and presenting a modified analytical model. CMES Comput. Model. Eng. Sci. 113(3), 295–323 (2017)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of CaliforniaBerkeleyUSA
  2. 2.Livermore Software Technology Corporation (LSTC)LivermoreUSA

Personalised recommendations