Advertisement

Acta Mechanica

, Volume 230, Issue 3, pp 821–837 | Cite as

Delamination influence on elastic properties of laminated composites

  • Humberto Brito-SantanaEmail author
  • Bruno Guilherme Christoff
  • Antonio Joaquim Mendes Ferreira
  • Frédéric Lebon
  • Reinaldo Rodríguez-Ramos
  • Volnei Tita
Original Paper
  • 76 Downloads

Abstract

The present work aims to predict the behavior of effective elastic properties for laminated composites, considering localized damage in the interface between two layers. In practical terms, the damage in the adhesion, which influences the effective elastic properties of a laminate, is evaluated like a delamination between adjacent layers. Thus, the effective properties of laminated composites with different delamination extensions are calculated via finite element method and two-scale asymptotic homogenization method. It is investigated how the properties of the laminated composites are affected by the delamination extension and the thickness of the interface between layers. It is possible to conclude that the effective coefficient values decrease as the damage extension increases due to the fact that the delamination area increases. Besides, for all effective coefficients, except the effective coefficients \(C_{12}^*\), \(C_{13}^*\), and \(C_{23}^*\), in the case without delamination, the coefficients decrease as the adhesive region thickness increases, and almost all coefficients decrease for complete separation of the interface. Numerical and analytical results are compared in order to show the potentialities and limitations of the proposed approaches. Finally, a numerical approach is used to simulate a specific case, where the interface is considered a functionally graded material.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Ashari, S.E., Mohammadi, S.: Delamination analysis of composites by new orthotropic bimaterial extended finite element method. Int. J. Numer. Methods Eng. 86, 1507–43 (2011)CrossRefzbMATHGoogle Scholar
  2. 2.
    Aghdam, M.M., Falahatgar, S.R.: Micromechanical modeling of interface damage of metal matrix composites subjected to transverse loading. Comput. Struct. 66, 415–20 (2004)CrossRefGoogle Scholar
  3. 3.
    Bonora, N., Ruggiero, A.: Micromechanical modeling of composites with mechanical interface—Part II: damage mechanics assessment. Compos. Sci. Technol. 66, 323–32 (2006)CrossRefGoogle Scholar
  4. 4.
    Aghdam, M.M., Falahatgar, S.R., Gorji, M.: Micromechanical consideration of interface damage in fiber reinforced Ti-alloy under various combined loading conditions. Compos. Sci. Technol. 68, 3406–11 (2008)CrossRefGoogle Scholar
  5. 5.
    Fang, Q.H., Jin, B., Liu, Y., Liu, Y.W.: Interaction between screw dislocations and inclusions with imperfect interfaces in fiber-reinforced composites. Acta Mech. 203, 113–125 (2009)CrossRefzbMATHGoogle Scholar
  6. 6.
    Mahmoodi, M.J., Aghdam, M.M., Shakeri, M.: Micromechanical modeling of interface damage of metal matrix composites subjected to off-axis loading. Mater. Des. 31, 829–36 (2010)CrossRefGoogle Scholar
  7. 7.
    Escarpini Filho, R.S., Marques, S.P.C.: A model for homogenization of linear viscoelastic periodic composite materials with imperfect interface. Lat. Am. J. Solids Struct. 13, 2706–2735 (2016)CrossRefGoogle Scholar
  8. 8.
    Almeida, J.H.S., Ribeiro, M.L., Tita, V., Amico, S.C.: Damage and failure in carbon/epoxy filament wound composite tubes under external pressure: experimental and numerical approaches. Mater. Des. 96, 431–38 (2016)CrossRefGoogle Scholar
  9. 9.
    Almeida, J.H.S., Ribeiro, M.L., Tita, V., Amico, S.C.: Damage modeling for carbon fiber/epoxy filament wound composite tubes under radial compression. Compos. Struct. 160, 204–210 (2017)CrossRefGoogle Scholar
  10. 10.
    Voyiadjis, G.Z., Kattan, P.I.: Introducing damage mechanics templates for the systematic and consistent formulation of holistic material damage models. Acta Mech. 228, 951–990 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lu, H., Guo, L., Liu, G. et al.: Progressive damage investigation of 2.5D woven composites under quasi-static tension. Acta Mech. (2018).  https://doi.org/10.1007/s00707-017-2024-z
  12. 12.
    Yam, L.H., Wei, Z., Cheng, L., Wong, W.O.: Numerical analysis of multi-layer composite plates with internal delamination. Comput. Struct. 82, 627–37 (2004)CrossRefGoogle Scholar
  13. 13.
    Alfaro, M.V.C., Suiker, A.S.J., Borst, R., Remmers, J.J.C.: Analysis of fracture and delamination in laminates using 3D numerical modelling. Eng. Fract. Mech. 76, 761–80 (2009)CrossRefGoogle Scholar
  14. 14.
    Wang, R.G., Zhang, L., Zhang, J., Liu, W.B., He, X.D.: Numerical analysis of delamination buckling and growth in slender laminated composite using cohesive element method. Comput. Mater. Sci. 50, 20–31 (2010)CrossRefGoogle Scholar
  15. 15.
    Simon, J.W., Stier, B., Reese, S.: Numerical analysis of layered fiber composites accounting for the onset of delamination. Adv. Eng. Softw. 80, 4–11 (2015)CrossRefGoogle Scholar
  16. 16.
    Hirwani, C.K., Panda, S.K., Mahapatra, T.R., Mandal, S.K., Mahapatra, S.S., De, AK.: Delamination effect on flexural responses of layered curved shallow shell panel-experimental and numerical analysis. Int. J. Comput. Methods (2017).  https://doi.org/10.1142/S0219876218500275
  17. 17.
    Thai, T.Q., Rabczuk, T., Zhuang, X.: Numerical study for cohesive zone model in delamination analysis based on higher-order B-spline functions. J. Micromech. Mol. Phys. (2017).  https://doi.org/10.1142/S2424913017500047
  18. 18.
    Tran, Q.T., Toumi, A., Turatsinze, A.: Delamination of thin bonded cement-based overlays: analytical analysis. Mater. Struct. 44, 43–51 (2011)CrossRefGoogle Scholar
  19. 19.
    Song, M.C., Sankar, B.V., Subhash, G., Yen, C.F.: Analysis of mode I delamination of z-pinned composites using a non-dimensional analytical model. Composites Part B 43, 1776–84 (2012)CrossRefGoogle Scholar
  20. 20.
    Kargarnovin, M.H., Ahmadian, M.T., Jafari-Talookolaei, R.-A., Abedi, M.: Semi-analytical solution for the free vibration analysis of generally laminated composite Timoshenko beams with single delamination. Composites Part B 45, 587–600 (2013)CrossRefGoogle Scholar
  21. 21.
    Ojo, S.O., Ismail, S.O., Paggi, M., Dhakal, H.N.: A new analytical critical thrust force model for delamination analysis of laminated composites during drilling operation. Composites Part B 124, 207–17 (2017)CrossRefGoogle Scholar
  22. 22.
    Saoudi, J., Zitoune, R., Gururaja, S., Salem, M., Mezleni, S.: Analytical and experimental investigation of the delamination during drilling of composite structures with core drill made of diamond grits: X-ray tomography analysis. J. Compos. Mater. 52, 1281–1294 (2017)CrossRefGoogle Scholar
  23. 23.
    Brito-Santana, H., De Medeiros, R., Ferreira, A.J.M., Rodríguez-Ramos, R., Tita, V.: Effective elastic properties of layered composites considering non-uniform imperfect adhesion. Appl. Math. Model. 59, 183–204 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North-Holland, New York (1978)zbMATHGoogle Scholar
  25. 25.
    Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory (Lecture Notes in Physics, 127). Springer Verlag, Berlin (1980)Google Scholar
  26. 26.
    Oleinik, O.A., Panasenko, G.P.: Homogenization and asymptotic expansions for solutions of the elasticity system with rapidly oscillating periodic coefficients. Appl. Anal. 15, 15–32 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Bakhvalov, N.S., Panasenko, G.P.: Homogenization Averaging Processes in Periodic Media. Kluwer Academic Publishers, Dordrecht (1989)CrossRefzbMATHGoogle Scholar
  28. 28.
    Fang, Z., Sun, W., Tzeng, J.T.: Asymptotic homogenization and numerical implementation to predict the effective mechanical properties for electromagnetic composite conductor. J. Compos. Mater. 38, 1371–85 (2004)CrossRefGoogle Scholar
  29. 29.
    Hassani, B., Hinton, E.: A review of homogenization and topology optimization II- analytical and numerical solutions of homogenization equations. Comput. Struct. 69, 719–38 (1998)CrossRefzbMATHGoogle Scholar
  30. 30.
    Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method: The Basis, vol. 1. Butterworth-Heinemann, Oxford (2000)zbMATHGoogle Scholar
  31. 31.
    Bezanson, A., Karpinski, S., Shan, V.B., Edelman, A.: Julia: A fast dynamic language for technical computing. arXiv preprint arXiv:1209.5145 (2012), 292
  32. 32.
    Hughes, T.J.R.: The Finite Element Method—Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, New Jersey (1987)zbMATHGoogle Scholar
  33. 33.
    Geuzaine, C., Remacle, J.F.: Gmsh: a three-dimensional finite element mesh generator with built-in and pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–31 (2009)CrossRefzbMATHGoogle Scholar
  34. 34.
    Tita, V., Carvalho, J., Vandepitte, D.: Failure analysis of low velocity impact on thin composite laminates: experimental and numerical approaches. Compos. Struct. 83, 413–28 (2008)CrossRefGoogle Scholar
  35. 35.
    Verbis, J.T., Kattis, S.E., Tsinopoulos, S.V., Polyzos, D.: Wave dispersion and attenuation in fiber composites. Comput. Mech. 27, 244–52 (2001)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Aeronautical Engineering, São Carlos School of EngineeringUniversity of São PauloSão CarlosBrazil
  2. 2.Mechanical Engineering Department, Faculty of Engineering of University of PortoUniversity of PortoPortoPortugal
  3. 3.CNRS, Centrale Marseille, Laboratoire de Mécanique et d’AcoustiqueAix-Marseille UniversitéMarseille Cedex 13France
  4. 4.Faculty of Mathematics and Computing SciencesUniversity of HavanaHavanaCuba

Personalised recommendations