Advertisement

Understanding size-dependent migration of a two-phase lithiation front coupled to stress

  • Yuyang Lu
  • Ai Kah Soh
  • Yong Ni
  • Linghui He
Original Paper
  • 11 Downloads

Abstract

Recent in-situ experiments show that stress-driven migration of the phase interface during two-phase lithiation in nanosized particles exhibits self-limiting and size-dependent behaviors wherein the mechanism remains unclear. In the reaction-limited regime, we develop a mechano-kinetic coupling model with a nonlinear kinetic law to study the size effect of such phase boundary movement accounting for possible sources of stresses by chemical lithiation, concurrent plasticity, surface/interface elasticity, and elastic softening of the lithiated phase. We show that both hydrostatic and non-hydrostatic stresses contribute to the driving force for the phase interface movement and result in the size-dependent slowing down behavior of the phase interface. The obtained results reveal why the interface movement slows down more dramatically in the smaller particle, and there are similar lithiation time scales in nanoparticles of different sizes observed in experiments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We would like to thank A. F. Bower for helpful discussions and valuable suggestions. Y. Ni was supported by the National Natural Science Foundation of China (Grant No. 11472262), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB22040502), the Collaborative Innovation Center of Suzhou Nano Science and Technology, and the Fundamental Research Funds for the Central Universities. A.K. Soh was supported by the Advanced Engineering Programme, Monash University Malaysia.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001).  https://doi.org/10.1038/35104644 CrossRefGoogle Scholar
  2. 2.
    Chan, C.K., Peng, H., Liu, G., Mcllwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotech. 3(1), 31–35 (2008).  https://doi.org/10.1038/nnano.2007.411 CrossRefGoogle Scholar
  3. 3.
    Mukhopadhyay, A., Sheldon, B.W.: Deformation and stress in electrode materials for Li-ion batteries. Prog. Mater. Sci. 63, 58–116 (2014).  https://doi.org/10.1016/j.pmatsci.2014.02.001 CrossRefGoogle Scholar
  4. 4.
    Zhang, L., Song, Y., He, L., Ni, Y.: Variations of boundary reaction rate and particle size on the diffusion-induced stress in a phase separating electrode. J. Appl. Phys. 116(14), 143506 (2014).  https://doi.org/10.1063/1.4897459 CrossRefGoogle Scholar
  5. 5.
    Zhao, K., Pharr, M., Vlassak, J.J., Suo, Z.: Fracture of electrodes in lithium-ion batteries caused by fast charging. J. Appl. Phys. 108(7), 073517 (2010).  https://doi.org/10.1063/1.3492617 CrossRefGoogle Scholar
  6. 6.
    Tang, M., Huang, H.Y., Meethong, N., Kao, Y.H., Carter, W.C., Chiang, Y.M.: Model for the particle size, overpotential, and strain dependence of phase transition pathways in storage electrodes: application to nanoscale olivines. Chem. Mater. 21(8), 1557–1571 (2009).  https://doi.org/10.1021/Cm803172s CrossRefGoogle Scholar
  7. 7.
    Li, D., Zhou, H.: Two-phase transition of Li-intercalation compounds in Li-ion batteries. Mater. Today 17(9), 451–463 (2014).  https://doi.org/10.1016/j.mattod.2014.06.002 CrossRefGoogle Scholar
  8. 8.
    Chang, L., Lu, Y., He, L., Ni, Y.: Phase field model for two-phase lithiation in an arbitrarily shaped elastoplastic electrode particle under galvanostatic and potentiostatic operations. Int. J. Solids Struct. 143, 73–83 (2018).  https://doi.org/10.1016/j.ijsolstr.2018.02.033 CrossRefGoogle Scholar
  9. 9.
    Lu, Y.Y., Ni, Y.: Stress-mediated lithiation in nanoscale phase transformation electrodes. Acta Mech. Solida Sin. 30(3), 248–253 (2017).  https://doi.org/10.1016/j.camss.2017.05.004 CrossRefGoogle Scholar
  10. 10.
    Liu, X.H., Fan, F., Yang, H., Zhang, S., Huang, J.Y., Zhu, T.: Self-limiting lithiation in silicon nanowires. ACS Nano 7(2), 1495–1503 (2013).  https://doi.org/10.1021/nn305282d CrossRefGoogle Scholar
  11. 11.
    McDowell, M.T., Ryu, I., Lee, S.W., Wang, C., Nix, W.D., Cui, Y.: Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater. 24(45), 6034–6041 (2012).  https://doi.org/10.1002/adma.201202744 CrossRefGoogle Scholar
  12. 12.
    Drozdov, A.D., Sommer-Larsen, P., deClaville Christiansen, J.: Self-limiting lithiation of electrode nanoparticles in Li-ion batteries. J. Appl. Phys. 114(22), 223514 (2013).  https://doi.org/10.1063/1.4844535 CrossRefGoogle Scholar
  13. 13.
    Bazant, M.Z.: Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. Acc. Chem. Res. 46(5), 1144–1160 (2013).  https://doi.org/10.1021/ar300145c CrossRefGoogle Scholar
  14. 14.
    Cui, Z., Gao, F., Qu, J.: Two-phase versus two-stage versus multi-phase lithiation kinetics in silicon. Appl. Phys. Lett. 103(14), 143901 (2013).  https://doi.org/10.1063/1.4824064 CrossRefGoogle Scholar
  15. 15.
    Zhao, K., Pharr, M., Wan, Q., Wang, W.L., Kaxiras, E., Vlassak, J.J., Suo, Z.: Concurrent reaction and plasticity during initial lithiation of crystalline silicon in lithium-ion batteries. J. Electrochem. Soc. 159(3), A238–A243 (2012).  https://doi.org/10.1149/2.020203jes CrossRefGoogle Scholar
  16. 16.
    Jia, Z., Li, T.: Stress-modulated driving force for lithiation reaction in hollow nano-anodes. J. Power Sources 275, 866–876 (2015).  https://doi.org/10.1016/j.jpowsour.2014.11.081 CrossRefGoogle Scholar
  17. 17.
    Bower, A.F., Guduru, P.R., Chason, E.: Analytical solutions for composition and stress in spherical elastic–plastic lithium-ion electrode particles containing a propagating phase boundary. Int. J. Solids Struct. 69–70, 328–342 (2015).  https://doi.org/10.1016/j.ijsolstr.2015.05.018 CrossRefGoogle Scholar
  18. 18.
    Lu, Y., Chang, L., Yao, H., He, L., Ni, Y.: Transition from deceleration to acceleration of lithiation front movement in hollow phase transformation electrodes. J. Electrochem. Soc. 164(13), A3371–A3379 (2017).  https://doi.org/10.1149/2.0781713jes CrossRefGoogle Scholar
  19. 19.
    Gao, F., Hong, W.: Phase-field model for the two-phase lithiation of silicon. J. Mech. Phys. Solids 94, 18–32 (2016).  https://doi.org/10.1016/j.jmps.2016.04.020 MathSciNetCrossRefGoogle Scholar
  20. 20.
    Bai, P., Cogswell, D.A., Bazant, M.Z.: Suppression of phase separation in LiFePO\(_4\) nanoparticles during battery discharge. Nano Lett. 11(11), 4890–4896 (2011).  https://doi.org/10.1021/nl202764f CrossRefGoogle Scholar
  21. 21.
    Liang, L., Qi, Y., Xue, F., Bhattacharya, S., Harris, S.J., Chen, L.Q.: Nonlinear phase-field model for electrode–electrolyte interface evolution. Phys. Rev. E 86(5 Pt 1), 051609 (2012).  https://doi.org/10.1103/PhysRevE.86.051609 CrossRefGoogle Scholar
  22. 22.
    Deshpande, R., Qi, Y., Cheng, Y.-T.: Effects of concentration-dependent elastic modulus on diffusion-induced stresses for battery applications. J. Electrochem. Soc. 157(8), A967 (2010).  https://doi.org/10.1149/1.3454762 CrossRefGoogle Scholar
  23. 23.
    Cui, Z., Gao, F., Cui, Z., Qu, J.: A second nearest-neighbor embedded atom method interatomic potential for Li–Si alloys. J. Power Sources 207, 150–159 (2012).  https://doi.org/10.1016/j.jpowsour.2012.01.145 CrossRefGoogle Scholar
  24. 24.
    Huang, S., Fan, F., Li, J., Zhang, S., Zhu, T.: Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries. Acta Mater. 61(12), 4354–4364 (2013).  https://doi.org/10.1016/j.actamat.2013.04.007 CrossRefGoogle Scholar
  25. 25.
    Lu, Y.Y., Ni, Y.: Effects of particle shape and concurrent plasticity on stress generation during lithiation in particulate Li-ion battery electrodes. Mech. Mater. 91, 372–381 (2015).  https://doi.org/10.1016/j.mechmat.2015.03.010 CrossRefGoogle Scholar
  26. 26.
    Cheng, Y.-T., Verbrugge, M.W.: The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. J. Appl. Phys. 104(8), 083521 (2008).  https://doi.org/10.1063/1.3000442 CrossRefGoogle Scholar
  27. 27.
    Liu, Y., Lv, P., Ma, J., Bai, R., Duan, H.L.: Stress fields in hollow core–shell spherical electrodes of lithium ion batteries. Proc. R. Soc. A 470(2172), 20140299–20140299 (2014).  https://doi.org/10.1098/rspa.2014.0299 CrossRefGoogle Scholar
  28. 28.
    Hao, F., Fang, D.: Diffusion-induced stresses of spherical core-shell electrodes in lithium-ion batteries: the effects of the shell and surface/interface stress. J. Electrochem. Soc. 160(4), A595–A600 (2013).  https://doi.org/10.1149/2.054304jes CrossRefGoogle Scholar
  29. 29.
    Yu, H.H., Suo, Z.: Stress-dependent surface reactions and implications for a stress measurement technique. J. Appl. Phys. 87(3), 1211–1218 (2000).  https://doi.org/10.1063/1.371999 CrossRefGoogle Scholar
  30. 30.
    Cui, Z.W., Gao, F., Qu, J.M.: Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium-ion batteries. J. Mech. Phys. Solids 61(2), 293–310 (2013).  https://doi.org/10.1016/j.jmps.2012.11.001 MathSciNetCrossRefGoogle Scholar
  31. 31.
    Asaro, R., Lubarda, V.: Mechanics of Solids and Materials. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  32. 32.
    Shenoy, V.B., Johari, P., Qi, Y.: Elastic softening of amorphous and crystalline Li–Si phases with increasing Li concentration: a first-principles study. J. Power Sources 195(19), 6825–6830 (2010).  https://doi.org/10.1016/j.jpowsour.2010.04.044 CrossRefGoogle Scholar
  33. 33.
    Fischer, F.D., Svoboda, J.: Stresses in hollow nanoparticles. Int. J. Solids Struct. 47(20), 2799–2805 (2010).  https://doi.org/10.1016/j.ijsolstr.2010.06.008 CrossRefzbMATHGoogle Scholar
  34. 34.
    Gurtin, M.E., Murdoch, A.I.: Continuum theory of elastic-material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Suo, Z.: Motions of microscopic surfaces in materials. Adv. Appl. Mech. 33(33), 193–294 (1997).  https://doi.org/10.1016/S0065-2156(08)70387-9 MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Freund, L.B., Suresh, S.: Thin film materials: stress, defect formation and surface evolution. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  37. 37.
    Zhang, X., Lee, S.W., Lee, H.-W., Cui, Y., Linder, C.: A reaction-controlled diffusion model for the lithiation of silicon in lithium-ion batteries. Extreme Mech. Lett. 4, 61–75 (2015).  https://doi.org/10.1016/j.eml.2015.04.005 CrossRefGoogle Scholar
  38. 38.
    Cui, Z., Gao, F., Qu, J.: A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J. Mech. Phys. Solids 60(7), 1280–1295 (2012).  https://doi.org/10.1016/j.jmps.2012.03.008 MathSciNetCrossRefGoogle Scholar
  39. 39.
    Xu, Y.H., Yin, G.P., Zuo, P.J.: Geometric and electronic studies of Li\(_{15}\)Si\(_{4}\) for silicon anode. Electrochim. Acta 54(2), 341–345 (2008).  https://doi.org/10.1016/j.electacta.2008.07.083 CrossRefGoogle Scholar
  40. 40.
    Liu, X.H., Zheng, H., Zhong, L., Huang, S., Karki, K., Zhang, L.Q., Liu, Y., Kushima, A., Liang, W.T., Wang, J.W., Cho, J.H., Epstein, E., Dayeh, S.A., Picraux, S.T., Zhu, T., Li, J., Sullivan, J.P., Cumings, J., Wang, C., Mao, S.X., Ye, Z.Z., Zhang, S., Huang, J.Y.: Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11(8), 3312–3318 (2011).  https://doi.org/10.1021/nl201684d CrossRefGoogle Scholar
  41. 41.
    Sethuraman, V.A., Chon, M.J., Shimshak, M., Srinivasan, V., Guduru, P.R.: In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J. Power Sources 195(15), 5062–5066 (2010).  https://doi.org/10.1016/j.jpowsour.2010.02.013 CrossRefGoogle Scholar
  42. 42.
    Zang, J.-L., Zhao, Y.-P.: A diffusion and curvature dependent surface elastic model with application to stress analysis of anode in lithium ion battery. Int. J. Eng. Sci. 61, 156–170 (2012).  https://doi.org/10.1016/j.ijengsci.2012.06.018 MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Bernstein, N., Aziz, M.J., Kaxiras, E.: Amorphous-crystal interface in silicon: a tight-binding simulation. Phys. Rev. B 58(8), 4579–4583 (1998).  https://doi.org/10.1103/PhysRevB.58.4579 CrossRefGoogle Scholar
  44. 44.
    Deshpande, R., Cheng, Y.T., Verbrugge, M.W., Timmons, A.: Diffusion induced stresses and strain energy in a phase-transforming spherical electrode particle. J. Electrochem. Soc. 158(6), A718–A724 (2011).  https://doi.org/10.1149/1.3565183 CrossRefGoogle Scholar
  45. 45.
    Christensen, J., Newman, J.: A mathematical model of stress generation and fracture in lithium manganese oxide. J. Electrochem. Soc. 153(6), A1019–A1030 (2006).  https://doi.org/10.1149/1.2185287 CrossRefGoogle Scholar
  46. 46.
    Di Leo, C.V., Rejovitzky, E., Anand, L.: A Cahn–Hilliard-type phase-field theory for species diffusion coupled with large elastic deformations: application to phase-separating Li-ion electrode materials. J. Mech. Phys. Solids 70, 1–29 (2014).  https://doi.org/10.1016/j.jmps.2014.05.001 MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Gösele, U., Tu, K.N.: “Critical thickness” of amorphous phase formation in binary diffusion couples. J. Appl. Phys. 66(6), 2619 (1989).  https://doi.org/10.1063/1.344229 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern MechanicsUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  2. 2.School of EngineeringMonash University MalaysiaSubang JayaMalaysia

Personalised recommendations