Advertisement

Numerical simulations of emulsions in shear flows

  • Marco E. Rosti
  • Francesco De Vita
  • Luca Brandt
Open Access
Original Paper
  • 41 Downloads

Abstract

We present a modification of a recently developed volume of fluid method for multiphase problems (Ii et al. in J Comput Phys 231(5):2328–2358, 2012), so that it can be used in conjunction with a fractional-step method and fast Poisson solver, and validate it with standard benchmark problems. We then consider emulsions of two-fluid systems and study their rheology in a plane Couette flow in the limit of vanishing inertia. We examine the dependency of the effective viscosity \(\mu \) on the volume fraction \(\varPhi \) (from 10 to \(30\%\)) and the Capillary number Ca (from 0.1 to 0.4) for the case of density and viscosity ratio 1. We show that the effective viscosity decreases with the deformation and the applied shear (shear-thinning) while exhibiting a non-monotonic behavior with respect to the volume fraction. We report the appearance of a maximum in the effective viscosity curve and compare the results with those of suspensions of rigid and deformable particles and capsules. We show that the flow in the solvent is mostly a shear flow, while it is mostly rotational in the suspended phase; moreover, this behavior tends to reverse as the volume fraction increases. Finally, we evaluate the contributions to the total shear stress of the viscous stresses in the two fluids and of the interfacial force between them.

Notes

Acknowledgements

The work is supported by the Microflusa project. This effort receives funding from the European Union Horizon 2020 research and innovation program under Grant Agreement no. 664823. L.B. and M.E.R. also acknowledge financial support by the European Research Council Grant no. ERC-2013-CoG-616186, TRITOS. The computer time was provided by Swedish National Infrastructure for Computing (SNIC).

References

  1. 1.
    Alizad Banaei, A., Loiseau, J.C., Lashgari, I., Brandt, L.: Numerical simulations of elastic capsules with nucleus in shear flow. Eur. J. Comput. Mech. 26, 1–23 (2017)MathSciNetGoogle Scholar
  2. 2.
    Aulisa, E., Manservisi, S., Scardovelli, R., Zaleski, S.: A geometrical area-preserving volume-of-fluid advection method. J. Comput. Phys. 192(1), 355–364 (2003)zbMATHGoogle Scholar
  3. 3.
    Batchelor, G.K.: The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech. 83(01), 97–117 (1977)MathSciNetGoogle Scholar
  4. 4.
    Batchelor, G.K., Green, J.T.: The determination of the bulk stress in a suspension of spherical particles to order c2. J. Fluid Mech. 56(03), 401–427 (1972)zbMATHGoogle Scholar
  5. 5.
    Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100(2), 335–354 (1992)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Caserta, S., Guido, S.: Vorticity banding in biphasic polymer blends. Langmuir 28(47), 16254–16262 (2012)Google Scholar
  7. 7.
    Caserta, S., Simeone, M., Guido, S.: A parameter investigation of shear-induced coalescence in semidilute PIB–PDMS polymer blends: effects of shear rate, shear stress volume fraction, and viscosity. Rheol. Acta 45(4), 505–512 (2006)Google Scholar
  8. 8.
    Caserta, S., Simeone, M., Guido, S.: Shear banding in biphasic liquid–liquid systems. Phys. Rev. Lett. 100(13), 137801 (2008)Google Scholar
  9. 9.
    Cristini, V., Guido, S., Alfani, A., Blawzdziewicz, J., Loewenberg, M.: Drop breakup and fragment size distribution in shear flow. J. Rheol. 47(5), 1283–1298 (2003)Google Scholar
  10. 10.
    Cummins, S.J., Francois, M.M., Kothe, D.B.: Estimating curvature from volume fractions. Comput. Fluids 83(6–7), 425–434 (2005)Google Scholar
  11. 11.
    De Vita, F., Rosti, M.E., Izbassarov, D., Duffo, L., Tammisola, O., Hormozi, S., Brandt, L.: Elastoviscoplastic flow in porous media. J. Non-Newton. Fluid Mech. 258, 10–21 (2018)MathSciNetGoogle Scholar
  12. 12.
    Dodd, M.S., Ferrante, A.: A fast pressure-correction method for incompressible two-fluid flows. J. Comput. Phys. 273, 416–434 (2014)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Dodd, M.S., Ferrante, A.: On the interaction of Taylor length scale size droplets and isotropic turbulence. J. Fluid Mech. 806, 356–412 (2016)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Dong, S., Shen, J.: A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios. J. Comput. Phys. 231(17), 5788–5804 (2012)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Einstein, A.: Investigations on the Theory of the Brownian Movement. Dover Publications, Mineola (1956)zbMATHGoogle Scholar
  16. 16.
    Ferrini, F., Ercolani, D., De Cindio, B., Nicodemo, L., Nicolais, L., Ranaudo, S.: Shear viscosity of settling suspensions. Rheol. Acta 18(2), 289–296 (1979)Google Scholar
  17. 17.
    Francois, M.M., Cummins, S.J., Dendy, E.D., Kothe, D.B., Sicilian, J.M., Williams, M.W.: A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework. J. Comput. Phys. 213(1), 141–173 (2006)zbMATHGoogle Scholar
  18. 18.
    Freund, J.B.: Numerical simulation of flowing blood cells. Ann. Rev. Fluid Mech. 46, 67–95 (2014)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Harvie, D.J.E., Fletcher, D.F.: A new volume of fluid advection algorithm: the stream scheme. J. Comput. Phys. 162(1), 1–32 (2000)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Hysing, S.R., Turek, S., Kuzmin, D., Parolini, N., Burman, E., Ganesan, S., Tobiska, L.: Quantitative benchmark computations of two-dimensional bubble dynamics. Int. J. Numer. Methods Fluids 60(11), 1259–1288 (2009)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Ii, S., Sugiyama, K., Takeuchi, S., Takagi, S., Matsumoto, Y., Xiao, F.: An interface capturing method with a continuous function: the THINC method with multi-dimensional reconstruction. J. Comput. Phys. 231(5), 2328–2358 (2012)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59(2), 308–323 (1985)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Kulkarni, P.M., Morris, J.F.: Suspension properties at finite Reynolds number from simulated shear flow. Phys. Fluids (1994-present) 20(4), 040602 (2008)zbMATHGoogle Scholar
  24. 24.
    Legendre, D., Daniel, C., Guiraud, P.: Experimental study of a drop bouncing on a wall in a liquid. Phys. Fluids (1994-present) 17(9), 097105 (2005)zbMATHGoogle Scholar
  25. 25.
    Loewenberg, M.: Numerical simulation of concentrated emulsion flows. J. Fluids Eng. 120(4), 824–832 (1998)Google Scholar
  26. 26.
    Loewenberg, M., Hinch, E.J.: Numerical simulation of a concentrated emulsion in shear flow. J. Fluid Mech. 321, 395–419 (1996)zbMATHGoogle Scholar
  27. 27.
    Mason, T.G.: New fundamental concepts in emulsion rheology. Curr. Opin. Colloid Interface Sci. 4(3), 231–238 (1999)Google Scholar
  28. 28.
    Matsunaga, D., Imai, Y., Yamaguchi, T., Ishikawa, T.: Rheology of a dense suspension of spherical capsules under simple shear flow. J. Fluid Mech. 786, 110–127 (2016)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Mewis, J., Wagner, N.J.: Colloidal Suspension Rheology. Cambridge University Press, Cambridge (2012)zbMATHGoogle Scholar
  30. 30.
    Noh, W.F., Woodward, P.: SLIC (simple line interface calculation). In: Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics, pp. 330–340. Springer (1976)Google Scholar
  31. 31.
    Picano, F., Breugem, W.P., Mitra, D., Brandt, L.: Shear thickening in non-Brownian suspensions: an excluded volume effect. Phys. Rev. Lett. 111(9), 098302 (2013)Google Scholar
  32. 32.
    Picano, F., Breugem, W.P., Brandt, L.: Turbulent channel flow of dense suspensions of neutrally buoyant spheres. J. Fluid Mech. 764, 463–487 (2015)MathSciNetGoogle Scholar
  33. 33.
    Pilliod Jr., J.E., Puckett, E.G.: Second-order accurate volume-of-fluid algorithms for tracking material interfaces. J. Comput. Phys. 199(2), 465–502 (2004)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  35. 35.
    Popinet, S., Zaleski, S.: A front-tracking algorithm for accurate representation of surface tension. Int. J. Numer. Methods Fluids 30(6), 775–793 (1999)zbMATHGoogle Scholar
  36. 36.
    Prosperetti, A., Tryggvason, G.: Computational Methods for Multiphase Flow. Cambridge University Press, Cambridge (2009)zbMATHGoogle Scholar
  37. 37.
    Puckett, E.G., Almgren, A.S., Bell, J.B., Marcus, D.L., Rider, W.J.: A high-order projection method for tracking fluid interfaces in variable density incompressible flows. J. Comput. Phys. 130(2), 269–282 (1997)zbMATHGoogle Scholar
  38. 38.
    Quintard, M., Whitaker, S.: Transport in ordered and disordered porous media II: generalized volume averaging. Transp. Porous Media 14(2), 179–206 (1994)Google Scholar
  39. 39.
    Rider, W.J., Kothe, D.B.: Reconstructing volume tracking. J. Comput. Phys. 141(2), 112–152 (1998)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Rosti, M.E., Brandt, L.: Numerical simulation of turbulent channel flow over a viscous hyper-elastic wall. J. Fluid Mech. 830, 708–735 (2017)MathSciNetGoogle Scholar
  41. 41.
    Rosti, M.E., Brandt, L.: Suspensions of deformable particles in a Couette flow. J. Non-Newton. Fluid Mech.  https://doi.org/10.1016/j.jnnfm.2018.01.008 (2018) (accepted)
  42. 42.
    Rosti, M.E., Brandt, L., Mitra, D.: Rheology of suspensions of viscoelastic spheres: deformability as an effective volume fraction. Phys. Rev. Fluids 3(1), 012301(R) (2018)Google Scholar
  43. 43.
    Rudman, M.: Volume-tracking methods for interfacial flow calculations. Int. J. Numer. Methods Fluids 24(7), 671–691 (1997)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Sacanna, S., Pine, D.J.: Shape-anisotropic colloids: building blocks for complex assemblies. Curr. Opin. Colloid Interface Sci. 16(2), 96–105 (2011)Google Scholar
  45. 45.
    Scardovelli, R., Zaleski, S.: Direct numerical simulation of free-surface and interfacial flow. Ann. Rev. Fluid Mech. 31(1), 567–603 (1999)MathSciNetGoogle Scholar
  46. 46.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, vol. 3. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  47. 47.
    Sethian, J.A., Smereka, P.: Level set methods for fluid interfaces. Ann. Rev. Fluid Mech. 35(1), 341–372 (2003)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Singh, A., Nott, P.R.: Experimental measurements of the normal stresses in sheared Stokesian suspensions. J. Fluid Mech. 490, 293–320 (2003)zbMATHGoogle Scholar
  49. 49.
    Stickel, J.J., Powell, R.L.: Fluid mechanics and rheology of dense suspensions. Ann. Rev. Fluid Mech. 37, 129–149 (2005)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994)zbMATHGoogle Scholar
  51. 51.
    Takeishi, N., Imai, Y., Ishida, S., Omori, T., Kamm, R.D., Ishikawa, T.: Cell adhesion during bullet motion in capillaries. Am. J. Physiol. Heart Circ. Physiol. 311(2), H395–H403 (2016)Google Scholar
  52. 52.
    Takeuchi, S., Yuki, Y., Ueyama, A., Kajishima, T.: A conservative momentum-exchange algorithm for interaction problem between fluid and deformable particles. Int. J. Numer. Methods Fluids 64(10–12), 1084–1101 (2010)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Torres, D.J., Brackbill, J.U.: The point-set method: front-tracking without connectivity. J. Comput. Phys. 165(2), 620–644 (2000)zbMATHGoogle Scholar
  54. 54.
    Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.J.: A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169(2), 708–759 (2001)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Tryggvason, G., Sussman, M., Hussaini, M.Y.: Immersed boundary methods for fluid interfaces. Comput. Methods Multiphase Flow 37, 239–261 (2007)Google Scholar
  56. 56.
    Tryggvason, G., Scardovelli, R., Zaleski, S.: Direct Numerical Simulations of Gas–Liquid Multiphase Flows. Cambridge University Press, Cambridge (2011)zbMATHGoogle Scholar
  57. 57.
    Unverdi, S.O., Tryggvason, G.: A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100(1), 25–37 (1992)zbMATHGoogle Scholar
  58. 58.
    Xia, Y., Gates, B., Yin, Y., Lu, Y.: Monodispersed colloidal spheres: old materials with new applications. Adv. Mater. 12(10), 693–713 (2000)Google Scholar
  59. 59.
    Xiao, F., Honma, Y., Kono, T.: A simple algebraic interface capturing scheme using hyperbolic tangent function. Int. J. Numer. Methods Fluids 48(9), 1023–1040 (2005)zbMATHGoogle Scholar
  60. 60.
    Yokoi, K.: Efficient implementation of THINC scheme: a simple and practical smoothed VOF algorithm. J. Comput. Phys. 226(2), 1985–2002 (2007)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Youngs, D.L.: Time-dependent multi-material flow with large fluid distortion. Numer. Methods Fluid Dyn. 24, 273–285 (1982)zbMATHGoogle Scholar
  62. 62.
    Youngs, D.L.: An interface tracking method for a 3D Eulerian hydrodynamics code. Technical Report 44/92, Atomic Weapons Research Establishment (1984)Google Scholar
  63. 63.
    Zalesak, S.T.: Fully multidimensional flux-corrected transport. J. Comput. Phys. 31, 335–362 (1979)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Zarraga, I.E., Hill, D.A., Leighton Jr., D.T.: The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids. J. Rheol. 44(2), 185–220 (2000)Google Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Linné Flow Centre and SeRCKTH MechanicsStockholmSweden

Personalised recommendations